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Abstract We investigate the high velocity flow in heterogeneous porous media.
The model is obtained by upscaling the flow at the heterogeneity scale where the
Forchheimer law is assumed to be valid. We use the method of multiple scale expan-
sions, which gives rigorously the macroscopic behaviour without any prerequisite on
the form of the macroscopic equations. We show that Forchheimer law does not gener-
ally survive upscaling. The macroscopic flow law is strongly non-linear and anisotropic.
A 2-point Padé approximation of the flow law in the form of a Forchheimer law is
given. However, this approximation is generally poor. These results are illustrated in
two particular cases: a layered composite porous media and a composite constituted
by a square array of circular porous inclusions embedded in a porous matrix. We show
that non-linearities are sources of anisotropy.

Keywords Flow in porous media - High velocity flow - Forchheimer law -
Heterogeneous porous media - Upscaling

Nomenclature

Roman letters

G Macroscopic gradient of pressure

K Permeability

K¥  Forchheimer equivalent permeability
K°' Effective permeability

/ Characteristic size of the pores

L Macroscopic characteristic length
n Medium 1 volume fraction

n Unit normal vector to I'

)4 Pressure
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214 J.-L. Auriault et al.

R Dimensionless numbers

v Fluid velocity

%4 Periodic cell

V1, V2 Medium 1 and 2 volumes in the periodic cell
X Dimensionless macroscopic space variable
X Dimensional space variable

y Dimensionless microscopic space variable
Greek letters

B Inertial coefficient

geft Effective inertial coefficient

e Small parameter of separation of scale

r Media 1 and 2 interface

W Potential

n Viscosity

0 Fluid density

1 Introduction

The aim of this paper is to investigate the high velocity macroscopic flow law in a
composite porous medium when assuming the validity of Forchheimer law at the
component scale. Forchheimer law (Forchheimer 1901) is an empirical law for high
permanent flow in porous media which simplicity makes it widely used at different
scales in petroleum engineering (Skjetne and Auriault 1999). Its isotropic form writes

~G= (L +povI) v, vl = VvV, (1)

where G = Vy p is the gradient of pressure p with respect to the space variable X,
w the viscosity, K the permeability, 8 > 0 an inertial coefficient, p the fluid density
and v the fluid velocity. For anisotropic media, Forchheimer law can be generalized
into

-G =uK v+ H(), 2

where K is the anisotropic permeability tensor and H is an homogeneous vectorial
function of degree 2 of v. As the velocity v goes to zero, Darcy law is recovered, so
that Forchheimer law is often considered as valid whatever be v. However, although
it often represents an acceptable approximation, it has been demonstrated that at
low velocity the departure from Darcy law is in |v|> (Wodie and Levy 1991; Mei
and Auriault 1991; Firdaous et al. 1997). More recently, the macroscopic behaviour of
high velocity flow in porous media was rigorously investigated by Marusi¢-Paloka and
Mikeli¢ (2000), by upscaling Navier-Stokes equations at the pore scale. They clearly
show that in general, Forchheimer law is not strictly verified. However, in Fourar et al.
(2004) it is shown from numerical experiments that 3-D flow are “correctly” modeled
by Forchheimer equation. Finally, let us remark that turbulent flow in simple and
complex media is usually described by a modified Forchheimer equation [see Skjetne
and Auriault (1999) and references herein].

In this paper, we investigate the macroscopic flow law in a composite porous
medium from low to high velocity by rigorously upscaling Forchheimer equation at
the component scale. A similar study was conducted by numerical way by Fourar
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Upscaling Forchheimer law 215

et al. (2005), under some restrictive conditions: Forchheimer law is assumed as valid
at the macro-scale, b = 8+/K is kept constant in the composite medium and the local
Forchheimer equation is linearized by considering the Reynolds number as a constant
over each constituent.

To obtain the macroscopic flow model from the component scale description, we use
an upscaling technique, i.e. the method of multiple scale expansions. Heterogeneous
systems as for example porous media may be modelled by an equivalent macroscopic
continuous system if the condition of separation of scales is verified (Bensoussan et al.
1978; Sanchez-Palencia 1980)

[

&= <1, 3)
where / and L are the characteristic lengths of the heterogeneities and of the mac-
roscopic sample or excitation, respectively. The macroscopic equivalent model is
obtained from the description at the heterogeneity scale by (Auriault 1991): (i) assum-
ing the medium to be periodic, without loss of generality. It is clear that real porous
media are rarely periodic. However, when the condition of separation of scales is
fulfilled, the structure of the macroscopic description of periodic and random media
are similar. Finally, notice that the periodic boundary conditions are widely used to
compute the effective properties of random media (Kanit et al. 2003, 2006); (ii) writing
the local description in a dimensionless form; (iii) evaluating the dimensionless num-
bers with respect to the scale ratio ¢; (iv) looking for the unknown fields in the form
of asymptotic expansions in powers of ¢; (v) solving the successive boundary-value
problems that are obtained after introducing these expansions in the local dimension-
less description. The macroscopic equivalent model is obtained from compatibility
conditions which are the necessary conditions for the existence of solutions to the
boundary-value problems. The main advantages of the method rely upon the pos-
sibility of: (a) avoiding prerequisites at the macroscopic scale; (b) modelling finite
size macroscopic samples; (c) modelling macroscopically non-homogeneous media or
phenomena; (d) modelling problems with several separations of scales; (¢) model-
ling several simultaneous phenomena; (f) determining whether the system “medium+
phenomena” is homogenisable or not; (g) providing the domains of validity of the
macroscopic models.

In Sect.2, we investigate the macroscopic flow model in the composite porous
medium, by assuming Forchheimer law to be valid at the component scale. In general
Forchheimer law does not survive upscaling. A 2-point Padé approximation of the
macroscopic flow model is given in Sect.3 from the behaviours at small and large
gradients of pressure. This approximate model is in the form of a Forchheimer law.
Analytical expressions of the macroscopic flow law are presented in the case of a lay-
ered composite porous media (Sect. 4), which permits to test the accuracy of the Padé
approximation. Two examples are investigated for low and high contrast properties of
the components. The relative error introduced by the Padé approximation is found to
be less than 15%. Finally, Sect. 5 is devoted to the numerical study of a 2D composite
constituted by a square array of circular porous inclusions in a porous matrix with
different properties. The flow parallel to the axis of symmetry of the microstructure
is first considered. The effective permeability of this composite is determined and
compared to the Padé approximation. We show that the relative error introduced by
the Padé approximation strongly depends on the volume fraction of both constitu-
ents and the contrast properties between the matrix and the inclusions. This error
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216 J.-L. Auriault et al.

may reach 80%. The flow out of the axis of symmetry of the microstructure is then
considered. Our numerical results show that the macroscopic velocity is not aligned
with the imposed pressure gradient in the high pressure gradient range.

2 Derivation of the macroscopic flow law

The considered composite porous medium is spatially periodic and consists of repeated
unit cells (parallelepipeds), see Fig. 1. For simplicity, we consider a two component
porous composite. There are two characteristic length scales in this problem: the char-
acteristic microscopic length scale / of the porous components and of the unit cell, and
the macroscopic length scale L that may be represented by the macroscopic sample
size or associated to the macroscopic flow. We assume that the two length scales / and
L are well separated

/
Z:s<<1. 4)

Periodic composite
porous medium

) V2
Representative

Elementaty =——p

Volume /

Fig. 1 A period of the porous medium
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Upscaling Forchheimer law 217

The unit cell is denoted by V and is bounded by dV, the two component parts of
the unit cell are denoted by V| and V>, respectively, and their interface inside the unit
cellisT.

2.1 Local description

An incompressible newtonian fluid is filtrating at high velocity through the composite
porous medium. We assume that the flow of this fluid in both constituents is described
by the isotropic Forchheimer law (1)

"
—G=(g+poM) V. V= Vv (5)

The local description is completed by the incompressibility condition
Vx-v=0, (6)

and the continuity of the normal flux and of the pressure on I'. It is convenient to
rewrite (1) in a reverse form. From (1) we have

Gl = (% + 8o M) VI (7)

which positive solution |v| is
1 wou?
=——|-= — +4Bp|G| | . 8
vl TR x T\ @ T 4prIGI (8)

2K

4BpK?
1+ 14 ’352 G|

where KT is a Forchheimer permeability. Finally, the flow is described by

v=—-—=Q@G, KF = )
"

KF
Vx- (—G) =0. (10)
n
2.2 Dimensionless local description

All physical quantities are made dimensionless, ¢ = ¢.¢*, where ¢, is a characteristic
value of the physical variable ¢ and ¢* is dimensionless. The choice of ¢, implies
¢* = O(1) which means ¢ < ¢* <« ¢~1. Due to the separation of scales, there are two
characteristic values of the space variable, / and L. That introduces two dimensionless
space variables, y = X// and x = X/L = ¢y, respectively. All quantities are functions
of these two dimensionless variables.

We assume that the two terms in the right hand member of the Forchheimer equation
(1) are of the same order of magnitude and we remark that the flow is caused by a
macroscopic gradient of pressure, which is equilibrated by these two terms

Pc (Mch

7 _ 0
K

_ 2
" ) = O(Beped). (1)
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218 J.-L. Auriault et al.

Other situations where one of the last two terms is smaller appear as particular cases of
the investigated estimation (11), see part 3. When using / as the characteristic length,
the dimensionless form of the local description (10) can be put in the form

KF* 2K*
v, (—*Vyp*) =0, KM =
H 1+\/1+R5*1R*|Vyp*|

; (12)

where R*(y,x) = 4B*p*K*? /u*? (here p* = 1and p* = 1) is y-periodic and possibly x
dependent and the dimensionless number R can be evaluated by using relations (11)

2
_ PepcKpe L ). (13)

R
[he? I L

For simplicity we consider R = 1 in the following case. On I' we have the continuity
of the pressure and of the normal flux

[p*1=0 on T, (14)
Fx
[v]-n= [— . Vyp*] nm=0 on T. (15)
We will also need the dimensionless form of the Forchheimer law (1)
_ 8_1V * E * %k * * 16
yP—K*+ﬂP|V|V~ (16)

2.3 Upscaling

The pressure p* and the velocity v* are looked for in the form of the following
asymptotic expansions

P =p* Oy +epVx,y) +2p* P xy) + -+, (17)

v =v Oy +ev®xy) + v Py + -, (18)

where the different terms p*@ and v*@® in the asymptotic expansion are dimension-
less and V-periodic in y. Introducing these expansions into the dimensionless local
description and extracting like power terms in ¢ yield different boundary value prob-
lems to be investigated.

At the order ¢!, equation (16) gives

v,p*® =0, PO =p 0. (19)

Let us now consider equation (12;) at the order £, together with the associated
conditions on I

KF*(O)
AN e (Vyp* D + v,p @) ) =0, (20)

2K*

KF*O) _
1+ /14 R V,prD) 4 V0]

eay
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where p*( is y-periodic and continuous on I', as well as the normal flux,

p*P1=0 on T, (22)

Fx(0)

K
v*O].n= [ - (VO + pr*“)))} n=0 on T. (23)

To investigate this boundary value problem for p*(, let us introduce the Hilbert space
V of all y-periodic functions, of zero average on V and continuous on I', with the scalar
product

vy = /V Vyp-Vyqdv. (24)

Multiplying (20) by a test function g of V, and integrating by parts on V yields the
weak formulation

KF*(O)
Vg eV, / Vyp'V + v, pr ). v gdv = 0. (25)
14

w

To investigate this strongly non-linear formulation, we pose (Vyp*“) + V., p*0y =
Y(p*(V) and we note that the quantity —v*© = KF*© Y)Y/, * derives from a poten-
tial ¥

Fx(0
o _KTOM oy

= 26
pE Y’ (26)
with
2 * * 1/2
¥ =——=0+RIYDQA+RY)'" =3). (27)
3u*R*
Furthermore it is possible to show that ¥ is convex
oy
Vp.q eV, YY) —¥X(@) - W(Q) -(Y(p) — Y(gq)) = 0. (28)
Formulation (25) can be rewritten in the form
d
Vg eV, a—z(p*(l)) -Vy,qdV =0, (29)
which gives with g = p*()
a
W ) v, av =, (30)
v oY

Let now ¢ = p*( in (28) and use (29) and (30). We are left with
Ypev, yYP) -y Y@ =0 (31)

The problem reduces to the minimization of the convex . Therefore, there exists a
unique p*(M to formulation (25). Taking into account the zero volume average extra-
neous condition introduced to define space V, yields the solution of the boundary
value problem (20-21) in the form
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220 J.-L. Auriault et al.

PV =F V) +p V). (32)
where F* is a non-linear functional. Finally, at the next order, equation (12;) gives

KF*(O)
w

Ve vO v, v =0  vO=_ (Vyp*D 4 v, p* Oy, (33)

where v*( is a periodic vector. Volume averaging this last equation (a necessary and
sufficient condition for the existence of v*(1) yields the first order approximation of
the macroscopic flow description

1
Ve =0, =g /V VO qy = _g*(V,p0), (34)

where the G/’s are non-linear functionals.
Returning to physical quantities, the macroscopic description becomes

Vx-(v) =0V -(v), (V) ==G(Vxp) + Oe(v)). (35)

In general, the macroscopic flow law (34;) cannot be put in the form of a Forchheimer
law. Therefore, Forchheimer law generally not survives upscaling. In the next sec-
tion, we look for a Padé approximation of the macroscopic flow law in the form of a
Forchheimer law.

3 Padé-Forchheimer approximation of the macroscopic flow law

For practical interest, it may be useful to look for a simple form of the macroscopic
flow law, such as those using Padé approximants. For that purpose, first we investigate
the low and high velocity regimes.

For small gradients of pressure, Forchheimer laws (1) and (9) reduce to Darcy law

K I
V= _*Gsmallv _Gsrnall ==V (36)
% K

It is well-known (see, e.g., Sanchez-Palencia 1980; Mei and Auriault 1989) that the
corresponding macroscopic flow law is a Darcy law with an effective permeability
tensor K¢ (for simplicity we drop the & order term)

Vx-(W) =0, —(Vxp)sman = p K~ (w). (37)

For large velocities, Forchheimer law reduces to Chézy law. Equations (1) and (9)
become, respectively

KF
- Glarge =Bplvlv, v= _7Glarge» (38)

QS
VBp |Glarge|
The upscaling is as above. By neglecting again the ¢ order error we have as in Sect. 2.3

Vx-(v)=0, (v)=- H(V xPiarge)>
_(VXp)large = H_l(<v>), (40)

(39)
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where G tends to H for large velocity. However now, due to the particular form of the
local Forchheimer law (38), V,p*() is an homogeneous function of degree 1 and v*©@
an homogeneous function of degree 1/2 of V xp*(o). Therefore, in (40) (V XD)large 18 an
homogeneous vectorial function of degree 2 of (v).

From the lower and the upper limits (37) and (40) of the macroscopic flow law,
respectively, a 2-point Padé approximation is easily constructed

—Vxp = p KD w) + H (). (41)

Equation (41) stands for an anisotropic Forchheimer law.

4 Layered composite porous media

To check the accuracy of (41), we first consider the laminated composite porous
medium shown in Fig. 2. Both components 1 and 2 are homogeneous. We successively
address the 1-D macroscopic flow perpendicular and parallel to the layer direction.
This very simple geometry can be investigated directly from the local description
(5-10), without using the homogenization formalism.

4.1 Flow perpendicular to the layers

In this case the velocity is in the X; direction and, due to the incompressibility condi-
tion dv, /90X, = 0, itis a constant in the composite medium. Therefore the macroscopic
flow is directly obtained by averaging the local Forchheimer law (1) with respect to
space variable X3, which at the first order of approximation gives (at this order,
pressure p is a constant in the period)

1
- 837”2 _ (M<E> + (B |V2|) v, (42)

1 _1
where <E> is the effective permeability KT and (8) = np; + (1 —n)B; = B is the

effective inertial coefficient in the direction perpendicular to the layers. In this par-
ticular case, the macroscopic flow follows a Forchheimer law (42), which is identical
with the Padé approximation (41).

X2
I medium 1 n!/
X1
>
medium 2 (1-n) [

Fig.2 A period of the layered porous medium
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4.2 Flow parallel to the layers

The fluid flow is now in direction Xj. It is easy to check that the pressure in the
period is independent of X,. Therefore, the macroscopic flow is directly obtained by
averaging Forchheimer law with respect to space variable X3 in its form (9)

2K
(KF) ap F 2
= & KFy = 4BpK= | op . 43
) woax ) <1+J " u? 0.X1 > )

Obviously (431) is not a Forchheimer law, whereas the Padé approximation (41) writes

ap m 1\ 2
T ﬁ(vlh’adé + (<ﬁ>) £ 1{v1)Pade! (V1) Pades (44)
1 _2
which is a Forchheimer law with K¢f = (K) and geft = <ﬁ> . By construction,

both flow laws (43) and (44) coincide for small and large velocities, respectively.

To investigate the accuracy of the Padé approximation, we have plotted in Fig.3
the relative error ({(vi)pag¢ — (v1))/(v1) versus dimensionless gradient of pressure
G* = (4/3"'“,0(1("“)2/ ,uz)aan1 for two composite materials which volume fractions
of each constituent is f = 0.5: a gravel-sand composite with high contrast proper-
ties, K1 = 3.76 x 1078 m?2, B =13x 103 m~! for the gravel, K, = 3 x 10710 m2,
By = 25 x 103 m™! for the sand, data from Venkataraman and Rama Mohan Rao
(1998), and a geosynthetic composite with small contrast properties, K| = 4.15 x 1077
m?, B =64.6m L, K» =33x10~8 m?, B = 314 m~!, data from Bordier and Zimmer
(2000). In these two examples, we see that the relative velocity error does not exceed
15%. However, the accuracy of the Padé approximation remains poorer for the high
contrast gravel-sand composite in a larger range of the gradient of pressure.

0.2

Relative velocity error
0.175

0.15
gravel-sand

0.125
0.1 \

0.075 N o
=~ eosynthetic
0.05 - \g y

G *
100 200 300 400 500

0.025

Fig.3 Relative velocity error introduced by the Padé approximation versus the gradient of pressure.
Bold: gravel-sand composite; dashed: geosynthetic composite
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5 Composite constituted by a square array of circular porous inclusions embedded
in a porous matrix

5.1 Microstructure

We consider now a composite constituted by a square array of circular porous inclu-
sions (volume fraction f) embedded in a porous matrix (Fig. 4). Due to the symmetries
of the REV which shows tetratropy, the linear Darcy regime is isotropic, K& = K¢ 1.
As previously, a gravel-sand composite with high contrast properties is considered:
K1 =376 x10%m?, 8 =13x10°mtand K, =3 x 10719m? g, =25 x 10° m~!
for the gravel and the sand, respectively. In the following, two cases are investigated:

— Case 1: inclusions of sand are embedded in a matrix of gravel,
— Case 2: inclusions of gravel are embedded in a matrix of sand.

5.2 Numerical procedure

In order to study the macroscopic flow law, we first investigate the following well-
posed boundary values problem (20-21) for p*@ e V in its dimensional form :

F(0)
Vx - ( (Vx(ep™) + vXp<°>>) =0 in V=ViUV,, (45)
"
KFO 1 0
(Vx(ep™)+Vxp®) | m=0 on T, (46)
"
with
4pBK2

14+ /1+ 2 IV x(epD) 4+ Vxp @)

where the macroscopic pressure gradient G = V xp© is given on the entire REV. This
boundary values problem was solved using the finite element method (Femlab 2005)

Fig. 4 Square array of circular !
inclusions embedded in a
matrix. Representative
Elementary Volume (REV)

matrix |

<v>
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224 J.-L. Auriault et al.

with triangular mesh and quadratic polynomial interpolation. Hence, the microstruc-
ture is submitted to a macroscopic pressure gradient G = V xp© of intensity denoted
|G| such that (see Fig.4)

G = Vxp® = |G|(coswe; + sinaey), (48)

where a = (e;,\G). The resulting macroscopic velocity (v) = (v(0) of intensity |(v)| is
such that

v) = (vO) = —|(v)|(cos( + y)e; + sin(a + y)er) (49)

—

where y = (G, —(v)) (see Fig. 4).
5.3 Numerical results: on axis-flow

We first impose a macroscopic gradient of pressure G = |Gle; (¢ = 0). Due to the
symmetry of the microstructure (v) = —|(v)|e; (y = 0). The apparent permeability of
the composite along e;-axis is defined as,

nlvl

KP(|G|) = .
aGhH Gl

(50)

Figures 5 and 6 present the evolution of the apparent permeability K?PP(G) versus
the macroscopic gradient of pressure G for different volume fractions of inclusion f
in the case 1 and 2, respectively. Evolutions of the Forchheimer equivalent permeabil-
ity KF of each constituent are also presented on theses figures. On both figures, we
observe that the apparent permeability KPP (|G|) decreases with increasing the mac-
roscopic gradient of pressure |G|, just as Forchheimer permeability K does. However,
relation (50) is not a Forchheimer law. Let us compare it to the Padé-Forchheimer
approximation (41). This one is written,

n
—|Gley = — ( et T AP |<v>|) [(v)les, (51)
where KT and g°!f for both cases investigated are summarized in Table 1. From
relation (51), we can defined the Padé equivalent permeability,

2 Keff

a8 K2
1+‘/1+pﬂ72|6|
"w

As previously, to investigate the accuracy of the Padé approximation, we have plotted
in Figs.7, 8 the relative error (Kpyge — K?PP)/K?PP versus gradient of pressure |G]|.
By construction, both flow laws (50) and (51) coincide for small and large gradient
of pressure, respectively. Therefore, in cases 1 and 2, the relative error is obviously
negligible for small and large gradient of pressure. For intermediate values of pressure
gradient, the relative error increases with increasing the volume fraction of inclusion.
It also depends on the properties of the matrix and the inclusion. In the case 1, the
relative error (Fig.7) is more than 80% for volume fractions of inclusion larger than
0.7. In the case 2 (Fig. 8), the relative error is lower than 5% for volume fractions of
inclusion less than 0.7.

KPade(|G|) =

(52)
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107 T

K" (gravel)

B COSRTHED -O SO eoam»«%

>
IR <R <R N
10° : =5 e

mz)

= 10° -~
&
K" (sand)
10-10 X
3O
G B
N } %%
gravel —
T
10-11 [ | | | _
102 10° 102 10* 10° 108

|G| (Pa/m)

Fig. 5 Case 1: inclusions of sand embedded in a matrix of gravel. Evolution of the apparent
permeability KPP of the composite medium versus the gradient of pressure |G| for different vol-
ume fraction of inclusion. (o) f = 0.1, (¢)f = 0.3, (<) f = 0.5, (X) f = 0.7. Dashed lines represent
Padé—Forchheimer approximations given by equation (52). Continuous lines represent the evolution
of the Forchheimer equivalent permeability K¥' of both constituents

5.4 Numerical results: off axis-flow

In the previous section, we have shown that the macroscopic flow law of such compos-
ite is not a Forchheimer law. The aim of this last section is to show that non-linearities
introduce anisotropy in the macroscopic flow. For that purpose, we now suppose for
example that the macroscopic gradient of pressure is G = |G|(+v/3/2e; + 1/2 e), i.e.
« = /6 in equation (48).

Figure 9 shows the evolution of the angle y = (G,/—\(v)) (see Fig.4) versus the
pressure gradient |G| for different volume fractions of inclusion in the case 1. Obvi-
ously, the angle y equals zero for small value of the pressure gradient (|G| < 0.1),
i.e. when inertial effects are negligible at the local scale in both the matrix and the
inclusion. For pressure gradient larger than 0.1, the evolution of y versus the pressure
gradient is complex and depends on the volume fraction of inclusion.

Figure 10 shows the evolution of the ratio |{v)|/(|(v1) + (v2)|) versus the pressure
gradient |G| for different volume fractions of inclusion in the case 1. Velocities (v),
(v1) and (v) are the macroscopic velocities when the composite is submitted to differ-
ent macroscopic pressure gradient |G|(+~/3/2 e; +1/2 2), |G|v/3/2 e; and |G| 1/2 e,
respectively. Figure 10 shows that this ratio is equal to one for small value of the
pressure gradient (|G| < 0.1), i.e. when inertial effects are negligible at the local scale
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KF

10°®

X IR —RIBODIIRE (IR — OO &m%

mz)

= 9
107 & oo <o <o < << <z,
-
g =

K2

5 C-OSSED -O ey ©OSED-OCTHID © CElED-OGRID ©,

i
O SO —O-SBD- & OO0 —O-COR  © CSOD— OO0 9&
N

K" (sand)

10-10

sand

qo" L ! \ \ |
10 10° 10 10* 10° 10°
|G| (Pa/m)
Fig. 6 Case 2: inclusions of gravel embedded in a matrix of sand. Evolution of the apparent
permeability KPP of the composite medium versus the gradient of pressure |G| for different vol-
ume fractions of inclusion. (o) f = 0.1, (¢)f = 0.3, (<) f = 0.5, (X) f = 0.7. Dashed lines represent
Padé—Forchheimer approximations given by equation (52). Continuous lines represent the evolution
of the Forchheimer equivalent permeability K¥' of both constituents

Table 1 Case 1 and 2: values of K¢!f and g¢ff for different volume fractions of inclusion f

f Keff _Case 1 Bt —Case 1 Keff _Case 2 peft —Case 2
(-] [m?] [m~1] [m?] [m~1]

0.1 3.09E-08 1.70E+03 3.66E-10 2.09E+04

0.3 2.04E-08 2.93E+03 5.52E-10 1.44E+04
0.5 1.25E-08 5.20E+03 9.03E-10 9.51E+03
0.7 5.41E-09 1.02E+04 2.07E-09 5.25E+03

in both the matrix and the inclusion. As previously, for pressure gradient larger than
0.1, the evolution of this ratio versus the pressure gradient is complex and depends
on the volume fraction of inclusion.

Results presented in Figs. 9, 10 show that y = 0 and [(v)|/(|(v1) + (v2)]) = 1 when
the pressure gradient is small (|G| < 0.1). This is the direct consequence of both the
linearity of the flow behaviour in this regime and the tetratropy of the microstructure
which yields an isotropic macroscopic flow law. When |G| > 0.1, inertial effects in the
matrix or/and in the inclusion are not negligible. Figures 9 and 10 show that y # 0 and
[(V)/([{v1) 4+ (v2)|) # 1:the permeation law is no more isotropic. Similar observations

@ Springer



Upscaling Forchheimer law 227

&g%
0.8 — G —
- > = X
o ®
&
8 - % ®
i 0.6 gravel | EEQ .
§ = 2
94 x B
: S
S 04 X
<

|G| (Pa/m)

Fig. 7 Case 1: inclusions of sand embedded in a matrix of gravel. Relative error introduced by the
Padé approximation versus the gradient of pressure for different volume fractions of inclusion. (o)
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Fig. 8 Case 2: inclusions of gravel embedded in a matrix of sand. Relative error introduced by the
Padé approximation versus the gradient of pressure for different volume fractions of inclusion. (o)
f=01,(0)f=03,(x)f =05 &) f=07

were established in the case of flow of non-linear power law fluids though square
arrays of parallel fibers of circular cross-section (Idris et al. 2004).

6 Conclusion

The modelling of high velocity flow in heterogeneous porous media has been
investigated by upscaling the flow at the heterogeneity scale where the Forchheimer
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Fig. 10 Case 1: inclusions of sand embedded in a matrix of gravel. Relative error introduced by the
Padé approximation versus the gradient of pressure for different volume fractions of inclusion. (o)
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law is assumed to be valid. We have first theoretically shown that Forchheimer law
does not generally survive upscaling. It has also be shown that as Forchheimer law
the macroscopic flow law is strongly non-linear, it is generally anisotropic for local
geometries which yield isotropic Darcy law in the linear regime and it can not be
satisfyingly described by a simple 2-point Padé—Forchheimer approximation, par-
ticularly in the case of inclusion more permeable than the matrix. Non-linearities
reveal anisotropy in the macroscopic flow law directly connected with the geometry
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anisotropy itself. Further work will concern the development of a methodology to
formulate the macroscopic flow law.
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