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A B S T R A C T

The aim of this work is to develop a new hyperelastic and anisotropic material mimicking

histological and mechanical features of healthy and aneurysmal arterial tissues. The

material is constituted by rhombic periodic lattices of hyperelastic fibres embedded

into a soft elastomer membrane. To fit bi-axial experimental data obtained from the

literature, with normal or pathologic human abdominal aortic tissues, the microstructure

of the periodic lattices (fibre length, angle between fibres) together with the mechanical

behaviour of the fibres (fibre tension-elongation curve) were optimised by using theoretical

results arising from a multi-scale homogenisation process. It is shown that (i) a material

constituted by only one periodic lattice of fibres is clearly not sufficient to describe all the

experimental data set, (ii) a quantitative agreement betweenmeasurements and theoretical

predictions is obtained by using a material with two fibre lattices, (iii) the optimised

microstructures and mechanical properties of the fibrous lattices are strongly different

for the abdominal healthy and aneurysmal arterial tissues, (iv) the anisotropic mechanical

behaviour of the optimisedmaterial is described by only five parameters and (v) the optimal

angles between fibres in the case of the healthy aorta are consistent with histological

data. Several technical solutions of fibres can be considered as relevant candidates: this

is illustrated in the particular cases of straight and wavy fibres.
c⃝ 2012 Elsevier Ltd. All rights reserved.
d

1. Motivations and objective

Abdominal aortic aneurysm (AAA) is a permanent dilatation
of the abdominal aorta (AA), due to both biological and
mechanical factors. Periodic hemodynamic forces applied to
the arterial wall contribute to its gradual expansion and
progressive degradation of its mechanical and structural
properties. The ultimate consequence of this degradation

∗ Correspondence to: IRPHE CNRS UMR 7342, Technopôle de Château
France. Tel.: +33 0 4 91 05 44 43.

E-mail address: lucie.bailly@irphe.univ-mrs.fr (L. Bailly).

1751-6161/$ - see front matter c⃝ 2012 Elsevier Ltd. All rights reserve
doi:10.1016/j.jmbbm.2012.02.019
-Gombert, 49 rue F. Joliot-Curie, B.P. 146, 13384, Marseille Cedex 13,

is the aneurysm rupture. Current criteria commonly used
for AAA rupture risk prediction derive from statistical
observations, and rely on morphological configurations.
Treatment is currently recommended for AAAs exceeding
5 cm in maximal diameter and those with expansion
rates superior to 0.5 cm/year. Yet, these criteria are often
neither easy to apply, nor always conclusive. Therefore,
practicians are still awaiting new reliable criteria to predict

.

http://dx.doi.org/10.1016/j.jmbbm.2012.02.019
http://www.elsevier.com/locate/jmbbm
http://www.elsevier.com/locate/jmbbm
mailto:lucie.bailly@irphe.univ-mrs.fr
http://dx.doi.org/10.1016/j.jmbbm.2012.02.019


152 J O U R N A L O F T H E M E C H A N I C A L B E H AV I O R O F B I O M E D I C A L M A T E R I A L S 1 0 ( 2 0 1 2 ) 1 5 1 – 1 6 5
the aneurysmal expansion rate, determine its critical size at
the point of rupture, and decide on a preventive AAA (endo)
surgical repair (Vorp and Geest, 2005).

To this end, fundamental knowledge of the biomechanical
behaviour of AAAs during pathogenesis, growth, and rupture
is required. More specifically, a precise characterisation of
fluid structure interactions in this biological context is
needed, taking into account the 3D geometry of AAAs and
the mechanical properties of aortic tissue. Therefore, during
recent decades, numerous experimental, theoretical and
computational works have been performed to predict the
spatio-temporal evolutions of wall shear stresses and wall
stresses induced by hemodynamic forces (Lasheras, 2007;
Humphrey and Taylor, 2008). The majority of these works
have focused on computational approaches, in particular
finite-element analysis using idealised or patient specific AAA
geometry, combined with isotropic (Thubrikar et al., 2001;
Wolters et al., 2005; Raghavan et al., 2006; Scotti and Finol,
2007; Kleinstreuer et al., 2007) or anisotropic material models
(Rodriguez et al., 2008; Vande Geest et al., 2008; Rissland
et al., 2009; Toungara et al., 2012). By contrast, however,
there is a huge disproportion of experimental devices suitable
to assess and validate these numerical simulations. Despite
current advances in medical imaging, in vivo experiments still
remain highly delicate and not always relevant in quantifying
fluid structure interactions. So far, most in vitro experiments
have been performed on rigid (a)symmetric models of AAA
(Egelhoff et al., 1999; Chong and How, 2004; Salsac et al.,
2006). First experimental studies based on deformable models
of AAA have been carried out recently (Deplano et al., 2007;
Doyle et al., 2010). Experiments performed by Deplano et al.
(2007) clearly highlight the impact of wall compliance on the
dynamics of vortices within the AAA, and so, on the pressure
distribution and wall shear stresses. However, current in
vitro AAA models are constructed using elastomers with
isotropic material properties, which are very far from the
anisotropic hyperelastic behaviour of AAA tissues (Vande
Geest et al., 2006). In recent decades, different materials,
such as Dacron, expanded polytetrafluoroethylene (ePTFE) or
electrospun biodegradable matrix (Jacobs et al., 2003; Chakfe
et al., 2004; VanLieshout et al., 2006; Boland et al., 2004;
McClure et al., 2010) have been developed in order to replace
native arterial tissues. However, the mechanical behaviour of
suchmaterials (stiffness, anisotropy. . . ) still remains quite far
from those of healthy or pathologic arteries.

Therefore, in order to (i) design and process a material
able to mimic the anisotropic hyperelastic properties of
AA and AAA tissues and (ii) perform in vitro experiments
similar to those carried out in Deplano et al. (2007) with
more relevant models of AA and AAA, the aim of the
present study is to provide a theoretical and numerical
framework able to predict the microstructure and mechanical
behaviour of this material. The chosen target is constituted
by one or two periodic lattices of fibres embedded in
a soft elastomer membrane, following the assumptions
and material requirements presented in Section 2. The
adopted methodology relies on a multi-scale homogenisation
technique coupled with an optimisation process of the
lattices detailed in Sections 2.2 and 2.3. Section 3 details
the homogenised and optimised microstructures of the
periodic lattices (fibre lengths and angles between fibres)
and mechanical behaviour of the fibres (tension–elongation
curves), in order to fit the mechanical behaviour of healthy
and pathologic human abdominal aortic tissues. Finally,
Section 4 draws conclusions about the fibrous lattices to be
designed, and points out the main challenges concerning the
manufacturing of the new composite material.

2. Methodology

2.1. Biological material and target

2.1.1. Histological properties of the aortic tissue
Human abdominal aortic tissue is a complex cylindrical
soft sandwich structure, architectured in three different
concentric layers: the intima (innermost layer), the media
(middle layer), and the adventitia (outer layer). Each layer is
characterised by specific histological features, with different
associated mechanical properties (Humphrey and Na, 2002;
Holzapfel et al., 2002). The intima is composed of endothelial
cells arranged in a thin layer of conjunctive tissue. The media
is constituted by a three-dimensional network of smooth
muscle cells, elastin and collagen fibrils with extracellular
matrix. The adventitiamainly consists of fibroblasts, fibrocytes
and collagen fibres. Within these layers, the distribution and
arrangement of all components display a double-helix fibrous
architecture, more or less equilibrated and characterised by
distinctive fibre orientation (Holzapfel, 2006; Horny et al.,
2010). Typically, the mean angle of such fibrous structures
with respect to the orthoradial direction of the artery eθ is
about 20◦, 38◦ and 59◦ in intimal, medial and adventitial strips
(Holzapfel, 2006; Horny et al., 2010). Moreover, at rest, it is
interesting to note that these fibrous structures are arranged
in a wavy architecture (Wolinsky and Glagov, 1964; Dobrin,
1978; Holzapfel, 2008).

2.1.2. Macroscopic mechanical behaviour of the aortic tissue
Previous tensile tests carried out on excised aortic specimens
have evidenced the highly non-linear and anisotropic
mechanical behaviour of human AA and AAA (Valenta,
1993; He and Roach, 1994; Raghavan et al., 1996; Thubrikar
et al., 2001; Vande Geest et al., 2004, 2006). For the
sake of simplicity, this behaviour is usually considered
as essentially hyperelastic, the non-linearity of which is
ascribed to the particular wavy architecture of the fibrous
structures, which tend to straighten along the loading
direction when they are subjected to a mechanical loading
(Wolinsky and Glagov, 1964; Dobrin, 1978; Holzapfel, 2008):
this gives the arterial tissues a macroscopic mechanical
response exhibiting a typical J-shape (see below). Moreover,
the preferred orientations of the fibrous architecture are
responsible for the mechanical anisotropy of the arterial
tissues.

In the present study, measurements performed by Vande
Geest et al. (2006) have been chosen as a reference to identify
AA and AAA biomechanical behaviour at the macroscale.
In these experiments, the authors investigated the bi-
axial biomechanical response of square AA and AAA tissue
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Fig. 1 – Average experimental data sets chosen as reference for (a) AA and (b) AAA macroscopic mechanical behaviour.
(From top to bottom) Cauchy tension τ versus elongation, corresponding elongation paths (λll, λθθ) and axial Piola–Kirchhoff
tension ratio Tθθ : Tll. The legend in the upper-right panel refers to the ratio Tθθ : Tll.
Source: From Vande Geest et al., 2006.
samples (8 AA samples and 26 AAA samples) to planar bi-
axial loadings along the orthoradial eθ and longitudinal el
directions. The initial gauge width of the tested specimen
was L0 = 20 mm, whereas the average thicknesses e0 of
the AA and AAA specimens were equal to 1.49 mm and
to 1.32 mm, respectively. During the tests, the orthoradial
and longitunal forces and elongations were measured, i.e.
Fθ, Fl and λθθ, λll, respectively. Tests were made at constant
tension ratios Tθθ/Tll, where the components Tθθ and Tll of
the first Piola–Kirchhoff tension tensor T, respectively along
the orthoradial and longitudinal directions, are defined as
Fθ/L0 and Fl/L0. Various tension ratios Tθθ/Tll were studied,
i.e. 0.5:1, 0.75:1, 1:1, 1:0.75 and 1:0.5, the tests being stopped
when the highest tension reached 120 N m−1. Results are
summarised in Fig. 1. In particular, the first four graphs of
this figure give the evolution of the components τθθ and τll of
the averaged Cauchy tension tensor τ as functions of λθθ, λll
for the AA and AAA specimens. They clearly emphasise the
non-linear response of the arterial tissues. They also show
that AAA tissues are much stiffer than AA tissues: whatever
the considered tested tension ratio, their J-shape responses
stiffen at lower elongations than those recorded for the AA
tissues. Also, the elongation paths (λθθ, λll) plotted in the next
two graphs tend to prove that the anisotropy of the AAA
tissues is more pronounced: the elongation paths do not
exhibit a symmetry with respect to the 1:1 path (dotted line
in Fig. 1), so that AAA tissue are stiffer in the orthoradial
direction than in the longitudinal direction.
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Fig. 2 – (a) Typical rhombic lattice under consideration and corresponding periodic Representative Elementary Volume of
the one-layer fibrous structure solution: (b) initial undeformed configuration C0, (c) actual configuration C.
2.1.3. Geometry and mechanics of the target material at the
microscale
In an attempt to mimic the macroscopic hyperelastic and
anisotropic mechanical properties of the arterial tissues
emphasised from Fig. 1, by taking into account the
histological features of these biological materials, we propose
to design a target composite material composed of a thin and
soft hyperelastic membrane reinforced by simplified periodic
fibrous microstructures displaying preferred orientations.
Two basic solutions are envisaged:

• The first solution is sketched in Fig. 2(a). The composite is
characterised by a one-layer fibrous structure comprising a
single lattice I of crossed and identical continuous fibres
embedded into a soft elastomer matrix.

• The second solution is characterised by a bi-layers fibrous
structure made up of two parallel fibrous lattices I and II
embedded into the soft matrix.

As shown for example in Fig. 2(a) in the case of the one-layer
fibrous structure, each fibrous lattice can be seen as a repetition
of a Representative Elementary Cell (REC) lying in the (eθ,el)
plane and sketched in Fig. 2(b) and (c) in the initial C0 and
deformed C configurations, respectively. The following points
summarise the main microscale geometrical and mechanical
hypotheses associated with this REC:

(1) The REC displays a rhomb shape and it is characterised by
two periodicity vectors P1 = A1A4 = l0E1 and P2 = A1A2 =

l0E2 (resp. p1 = a1a4 = l1e1 and p2 = a1a2 = l2e2) joining
the extremities A1, A2 and A4 (resp. a1,a2 and a4) of the
REC in the initial (resp. deformed) configuration. The REC’s
surface is noted SREC

0 = ∥P1×P2∥ (resp. SREC
= ∥p1×p2∥) in

C0 (resp. in C). The angles (eθ,P1) and (eθ,P2) (resp. (eθ,p1)

and (eθ,p2)) are respectively noted θI
01 and θI

02 (resp. θI
1 and

θI
2) in C0 (resp. in C). In the initial configuration C0, we
suppose that: θI

02 = −θI
01.

(2) Fibres are supposed to be linked at the REC extremities
A1, A2, A3 and A4, in such a way that the relative
displacement of fibres at these points is zero (their relative
rotation may be free or constrained).

(3) In between these points, the geometry of the fibres is free.
For example, fibres i (i = 1 and 2) can be straight fibres,
so that their initial and deformed lengths are expressed
as lf0i = ∥Pi∥ = l0 and lfi = ∥pi∥ = li, respectively. Fibres
i can also exhibit a wavy shape. In that case ∥Pi∥ = l0
(resp. ∥pi∥ = li) represents their initial (resp. actual) chord,
which is linked with their initial (resp. actual) length lf0i by

lf0i = ξ0il0 (resp. lfi = ξili), ξ0i (resp. ξi) being the initial (resp.
the actual) tortuosity of fibre i.

(4) Similarly, in between these points, the mechanical
behaviour of the fibres, i.e. the relations between the fibre
tensions ti = tiei (no summation on the indice i) and the
elongations of their corresponding chords λi = li/l0, are
supposed to be of hyperelastic types, i.e. the ti’s can be
ascribed a strain energy which is a function of the λi’s.
In order to mimic the J-shape curves observed during the
tension of collagen fibres, various functions can be used
(Holzapfel et al., 2000; Freed et al., 2005; Volokh, 2008).
Here, a phenomenological model was chosen, rather close
to the one proposed in Freed et al. (2005) so that:

ti = c0λi


e0.5c1((λi)

2
−1)

− 1

ei, (1)

where the ci’s are two constitutive parameters.
(5) The mechanical contribution of the thin elastomer

membrane, of initial and actual thickness em0 and em,
is described by a simple neo-Hookean model, thus
characterised by a volumetric strain-energy function
Wm

= cm(I1 − 3)/2, where cm is a positive material
parameter and where I1 = tr(C) denotes the first principal
invariant of the right Cauchy–Green tensor. Let us remark
that other more sophisticated hyperelastic models could
have been used, without modifying the method presented
here.

(6) For the sake of simplicity, the same type of fibre (geometry
and mechanical behaviour) is chosen for the one-layer and
the bi-layers fibrous structures. Besides, the second lattice II
of the bi-layers fibrous structure is supposed to be identical
to its first lattice I, except their initial orientation angles
θI
0 and θII

0 , which can be different (notice that associated
vectors such as the Pi,pi, Ei and ei with (i = 1,2) must also
be adjusted accordingly).

(7) The mechanical interactions between the homogenous
elastomer membrane and the fibrous lattice(s), but also
between the fibres of the REC during their relative
rotations, are assumed to be negligible.
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2.2. Homogenisation

According to the last hypothesis, the mechanical behaviour of
the considered composite material can be roughly considered
as the sum of two (or three) contributions, i.e. (i) that induced
by the deformation of the thin isotropic incompressible
homogeneous membrane of constant initial thickness, and
(ii) those induced by the deformation of the fibrous lattices.
Such contributions arise when the composite is subjected to
a 2D transformation gradient F in the (eθ,el) plane. Hence, the
overall macroscopic Cauchy tension tensor τ of the composite
material can be written as:

τc
= τm + τI

+ τII, (2)

where τm stands for the tension of the elastomer membrane,
and where τI and τII are the contributions of the fibre lattices
(for the one layer solution, the last term vanishes):

• The tension τm is function of the material parameter cm

and the instantaneous thickness em. It can be written as:

τm = em


−pδ + 2F
∂Wm

∂I1
FT


, (3)

where p represents a contribution to hydrostatic stress. In
the particular bi-axial deformation studied in this work,
the last expression becomes, by noting c̃m = cmem0 :

τm =
c̃m

λθθλll


(λ2θθ − λ−2

θθ
λ−2

ll )eθ ⊗ eθ

+ (λ2ll − λ−2
θθ

λ−2
ll )el ⊗ el


. (4)

• By using the homogenisation of periodic discrete struc-
tures (Tollenaere and Caillerie, 1998; Boutin and Hans,
2003; Le Corre et al., 2004; Caillerie et al., 2006), it is pos-
sible to obtain suitable analytical forms for the tension
contributions τI and τII (Caillerie et al., 2006). Indeed, con-
clusions drawn from the work of Caillerie et al. prove that
the considered discrete fibrous networks behave macro-
scopically as standard hyperelastic continua. The discrete
homogenisation also provides self equilibria to be solved
on REC, in order to estimate the effective hyperelastic
properties of the continua at the macroscale. In the case
of the simple REC considered in this work, it is possible to
solve analytically such self equilibria, and to show that the
motions of the extremities Ai of the REC are affine func-
tions of the macroscopic transformation gradient F. More-
over, the homogenisation provides analytical expressions
of the macroscopic Cauchy tension tensors τI and τII. For
example, τI can be expressed as:

τI
=

1
∥p1 × p2∥

(t1 ⊗ p1 + t2 ⊗ p2). (5)

A similar expression is obtained for τII. Obviously, this
homogenisation process is valid if the condition of
separation of scale is fulfilled, i.e. l0 ≪ D or L, where D and
L are the typical characteristic lengths of the artery (Fig. 2).
Finally, note that in the particular bi-axial loadings studied
in this work, in the deformed configuration C the angles
θI
i , the lengths li and, thus, the elongations and tensions

λi and ti do not depend on the fibre i, i.e. θI
1 = −θI

2 =

−θI, l1 = l2 = l, λ1 = λ2 = λ and t1 = t2 = t. Thus, by noting
t̃(λ) = t(λ)/l, Eq. (5) can be simplified to:

τI
=

t̃

sin 2θI
(e1 ⊗ e1 + e2 ⊗ e2). (6)

Finally, for a given macroscopic elongation path (λθθ, λll),
the mechanical behaviour of the one-layer composite can be
deduced from (2) combined with (4) and (6), and depends
on only four constitutive parameters to determine: three of
them relate to the fibrous lattice at the initial unloaded state
(θI
0, c̃0 = c0/l0, c1) and one of them relates to the elastomer

membrane c̃m = cmem0 . For the bi-layers composite, only one
additional constitutive parameter is required, i.e. the angle θII

0 .

2.3. Optimisation of microstructure

In order to determine the microstructural parameters of all
target solutions and to mimic the mechanical behaviour of
AA and AAA samples, an optimisation process has been
applied to fit previous analytical predictions with bi-axial
experimental data displayed in Fig. 1. Thus, the following
route has been taken:

(i) The different experimental elongation paths (λθθ, λll)

obtained by Vande Geest et al. (2006) and displayed in
Fig. 1 have been considered as inputs. Also, in order to
limit the number of available solutions, the constitutive
parameter c̃m was arbitrarily fixed to 0.014 MPa mm.
Such a value typically corresponds to that of an unfilled
silicone membrane of initial thickness em0 of ≈0.2 mm.

(ii) The unknown constitutive parameters to be determined
were the angles θI

0, θII
0 (only for the bi-layers solution),

together with the fibre constant c̃0 and c1, both being
required to determine the mechanical behaviour and the
chord length l0 of the fibres.

(iii) A least-squares approach has been employed to min-
imise the sum of errors Errork (k = [1..5]) with respect to
the model’s parameters, k referring to a specific macro-
scopic loading. The error of the homogenised predictions
for each loading condition k was given as:

Errork =

n
j=1


(τll − τc

ll)
2
j + (τθθ − τc

θθ)
2
j


, (7)

where n is the number of experimental points considered
in the specified kth data sets (n = 15), τll and τθθ

the experimental longitudinal and orthoradial Cauchy
tensions (see Fig. 1), and τc

ll and τc
θθ

the longitudinal
and orthoradial Cauchy tensions in the composite
membranes (see Eqs. (2), (4) and (6)). The global error
of the model Errormodel was calculated as the sum of
the five scalars Errork, thus defined as a non-linear
function of parameters (θI

0, c̃0, c1) (resp. (θI
0, θII

0 , c̃0, c1)) in
the one-layer (resp. bi-layers) solution. Minimisation of
the multi-variable function Errormodel was achieved using
a non-linear constraint optimisation process relying on
the Matlab routine fmincon (optimisation Toolbox), a
gradient-based method allowing one to define lower
and upper bounds on each parameter. An interior-point
algorithm was optionally selected (Byrd et al., 2000;
Waltz et al., 2006). The optimisation was completed
by using a termination tolerance of 1 · 10−20 on the
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objective function (Tol.Fun), the constraint violation
(Tol.Con) and on the solution (Tol.X). The guarantee
of convergence was evaluated by using the first-
order optimality output, based on Karush–Kuhn–Tucker
conditions (Kuhn and Tucker, 1951; Nocedal and Wright,
2006). Each optimisation was iterated by replacing the
initialised with optimised parameters until stability of
the converged solution. At the end of the optimisation
process, the relative error ϵi between an experimental
couple (λi, τi) and the corresponding optimised couple
(λc

i , τ
c
i ) can be calculated using:

ϵi =
[(λc

i − λi)
2

+ (τ̃i
c
− τ̃i)

2
]
0.5

[(λi − 1)2 + τ̃i
2
]0.5

, (8)

with i ∈ [1, n], and where τ̃i = τi
max(λi−1)

max(τi)
and τ̃i

c
=

τc
i
max(λc

i −1)

max(τc
i )

are respectively defined as the normalised

experimental and theoretical Cauchy tensions. In the
following, the maximum and average relative errors are
calculated by ϵmax = maxi∈[1,n] ϵi and ϵ̄ =

1
n

n
i=1 ϵi.

(iv) At last, having determined the optimal microstructure
parameters (angles and tension t̃(λ)), the homogenised
model can be inverted and conducted by imposing
experimental Piola–Kirchhoff tensions ratio Tθθ : Tll
instead of the experimental elongation path (λθθ, λll). This
step has been initiated as a validation of the method,
aiming at mimicking the exact control conditions that
were carried out by Vande Geest et al. (2006) during the
measurements.

3. Results

The relevance of the two envisaged solutions has been
tested with different assumptions. For that purpose, the
optimisation of both targets’ architecture are presented and
compared.

3.1. One-layer target material

The one-layer target has been subjected to two optimisa-
tion procedures. Indeed, a first pilot procedure of individual
optimisation has been conducted, in order to identify possi-
ble microstructure features which may be specific to each
macroscopic loading path. Then, a mean optimisation proce-
dure has been performed to determine the microstructure
features necessary to mimic the aortic wall behaviour, what-
ever the considered loading path.

3.1.1. Individual optimisations
This pilot study allowed us to test the validity of the
methodology and to characterise the mechanical response
of the one-layer model stretched under a given elongation
loading. For that purpose, the methodology detailed in
Section 2.3 has been applied, with step (iii) modified such
as minimisation only occurs on Errormodel = Errork, k = [1..5]

(no summation on the index k). Unknown parameters were
initialised with an arbitrary fixed θI

0 = 45◦, and with material
constants c̃0 and c1 deduced by inversion of the homogenised
Table 1 – Relative error between optimised data and
experimental data (Healthy aorta) depicted in Fig. 3,
mimicking elongation paths (λll, λθθ) (left), and
mimicking tension ratios Tθθ : Tll (right). Maximum value
ϵmax, mean value ϵ̄. All errors are in %, as defined in Eq.
(8).

Imposed (λll, λθθ) Imposed Tθθ : Tll
Tθθ : Tll ϵmax (%) ϵ̄ (%) ϵmax (%) ϵ̄ (%)

θθ

0.5:1 11.36 2.12 73.56 22.80
0.75:1 3.56 0.89 33.48 8.54
1:1 2.16 0.47 6.89 0.69
1:0.75 1.82 0.50 9.14 3.27
1:0.5 1.52 0.88 11.35 4.43

ll

0.5:1 1.34 0.76 13.11 5.52
0.75:1 1.69 0.73 9.80 3.70
1:1 2.14 0.47 6.91 0.71
1:0.75 3.47 0.67 31.18 7.70
1:0.5 6.26 1.50 81.32 24.33

model, imposing θI
0 = 45◦. Likewise, lower and upper bounds

defined on each parameter were initially chosen as follows:
θI
0 ∈ [1◦

;90◦
], c̃0 ∈ [0;0.01] N mm−1 and c1 ∈ [10;100]. Typical

results of these individual optimisations are illustrated in
Fig. 3 in the case of AA specimens. Important features can
be highlighted by analysing the mechanical aspects at both
macroscopic and microscopic scales.

• Macroscopic scale—Tension-elongation curves τθθ − λθθ and
τll−λll plotted in Fig. 3 compare the predictions given by the
above homogenisation model (2) with the data measured
by Vande Geest et al. (2006). The elongation paths (λll, λθθ)

and axial Piola–Kirchhoff tension ratios Tθθ : Tll have also
been reported. The figure compares the direct output of
the optimisations obtained while imposing experimental
elongation paths (λll, λθθ) (Fig. 3(a)) against the resimulated
data obtained while imposing constant experimental ten-
sion ratios Tθθ : Tll (Fig. 3(b)). For all five data series, values
of the first-order optimality are less than 2·10−6, indicating
complete convergence. Yet, the results evidence that an
a priori negligible discrepancy between the prediction and
themeasurement of the ratio Tθθ : Tll can yieldmuch larger
errors in the estimation of tension–elongation responses
and corresponding elongation path. As an example, when
k = 1, the relative error ϵi obtained on curve τθθ − λθθ

by mimicking experimental elongation paths, varies from
0.00% to 11.36% (mean value 2.12%). This error comprises
between 0.00% and 75.56% (mean value 22.80%) by mim-
icking an experimental tension ratio Tθθ : Tll = 0.5 : 1.
This trend is maintained for all data series k, in both or-
thoradial and longitudinal directions, as reported in Ta-
ble 1. This remarkable error propagation is due to the high
non-linearity of AA mechanical behaviour. Therefore, par-
ticular caution should be given to the comparison between
both elongation and tension paths simulated by a model to
be assessed. In this study, the relevance of the optimised
data will be further evaluated exclusively within the exper-
imental loading conditions, that is, by imposing a constant
tension ratio Tθθ : Tll.

• Microscopic scale—Important microstructure features have
been highlighted as a result of the preliminary optimisa-
tions. Fig. 4 displays the optimised mechanical behaviour
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a b

Fig. 3 – Comparison between the predictions of the one-layer model (solid lines) and Vande Geest experimental data
(symbols) at the macroscale for healthy AA samples. Optimisation has been processed for each loading path individually.
(a) Optimised data obtained while imposing experimental elongation paths (λθθ, λll). (b) Optimised data obtained while
imposing experimental Piola–Kirchhoff tension ratios Tθθ : Tll.
Table 2 – Optimised microstructural parameters of the one-layer composite material, firstly calculated by individual
optimisations, then by a mean optimisation process run on both extreme bi-axial loads 0.5:1 and 1:0.5.

Case AA Case AAA
Tθθ : Tll c̃0 (N mm−1) × 10−4 c1 (−) θI

0 (◦) c̃0 (N mm−1) × 10−4 c1 (−) θI
0 (◦)

0.5:1 5.29 37.01 55 1.59 74.59 54
0.75:1 5.78 38.56 49 2.43 72.86 49
1:1 6.02 38.84 45 2.48 76.40 45
1:0.75 5.01 38.92 41 2.84 72.82 41
1:0.5 4.65 37.82 35 2.99 69.96 35
0.5:1 & 1:0.5 5.74 41.37 45 3.17 75.54 46
t̃(λ) required tomimic AA (Fig. 4 top) and AAA (Fig. 4 bottom)

for each loading path. Corresponding parameters (c̃0, c1) to
each fibre exponential-shaped response are summarised

in Table 2. For the two target composite membranes, it
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is shown that the optimal hyperelastic behaviour of the
constitutive fibres are quite similar, regardless of the ra-
tio Tθθ : Tll. To analyse these results semi-quantatively, an
elastic modulus (Ẽc) and a critical elongation (λ̃c) can be
extracted from each t̃ − λ curve, as illustrated in Fig. 4.
These values have been estimated for a given value of
t̃ = 0.06 N mm−1. They allow one to characterise the lin-
ear response observed in the highest strains, as well as
the elongation associated with the transition between low-
and high-stiffness behaviour. In the healthy case, Ẽc varies
from 2.51 to 2.63 N mm−1 (mean value 2.58 N mm−1),
and λ̃c varies from 1.089 to 1.098 (mean value 1.094). In
the pathological case, Ẽc varies from 4.53 to 4.92 N mm−1

(mean value 4.73 N mm−1), and λ̃c varies from 1.057 to
1.064 (mean value 1.060). Therefore, a stiffening of the mi-
crostructure is needed in the pathological case, charac-
terised by an average modulus Ẽc doubled compared to its
value in healthy case.
As regards the fibre orientations in the one-layer model,
the optimised initial angle θI

0 varies from 35◦ to 55◦, de-
pending on the bi-axial loading conditions. Results are de-
tailed in Table 2. For each mechanical loading, the optimal
angle θI

0 is of the same order of magnitude for the AA and
AAA cases.

3.1.2. Mean optimisation
Here, a unique fibrous architecture is looked for, to check
if the one-layer model is sufficient to reproduce the aortic
macroscopic responses measured for several loading paths
Tθθ : Tll. A typical example of the mean optimisation
procedure has been applied on two ratios, so as to minimise
the global error Errormodel =


k=1,5 Errork (see (7)) within the

scope of healthy samples. Microstructure parameters have
been initialised by the triplet (c̃0, c1, θI

0), which was obtained
by applying the previous individual optimisation to the case
where Tθθ : Tll = 0.5 : 1 (k = 1) (see Table 2). The resulting
optimised microstructure properties are listed in Table 2,
along with those calculated by the individual procedures.
Associated predictions at the macroscopic scale are displayed
in Fig. 5. These results are unchanged if the optimisation is
initialised by the triplet (c̃0, c1, θI

0) obtained in the case where
Tθθ : Tll = 1 : 0.5 (k = 5).

Despite an achieved repeatable convergence (with an ac-
ceptable first-order optimality around 2 · 10−6), a quantitative
disagreement between experimental data and model predic-
tions is observed for both series 1 and 5. Regarding data series
k = 1, the relative error ϵi evaluated on tension–elongation
curves varies from 255.5% to 317.2% (mean value 297.4%) in
the orthoradial direction, and from 35.8% to 144.0% (mean
value 128.9%) in the longitudinal direction. Similar discrepan-
cies can be noticed for series k = 5, as well as for the patholog-
ical specimens. These results demonstrate that the one-layer
model is not sufficient to mimic the AA and AAA mechanical
responses measured in the most extreme bi-axial loads, and
a fortiori in all other investigated loading paths.

3.2. Bi-layer target material

Accounting for the limitations of the one-layer solution, the
bi-layers solution is now studied. Here, a mean optimisation
Fig. 4 – Optimised microscopic mechanical behaviour t̃ − λ

predicted by the homogenised model, for healthy (top) and
pathological (bottom) cases. Comparison between the
one-layer model predictions (individual optimisations, thin
lines), and the bi-layer model predictions (mean
optimisation, thick line).

procedure has been adopted, by operating upon the five
experimental bi-axial loads. The four unknown parameters
(θI
0, θII

0 , c̃0, c1) were initialised according to the converged
solutions of the above individual optimisations, run on the
two extreme bi-axial loads in the one-layer solution. Therefore,
initial angles θI

0 and θII
0 were respectively set to 35◦ and 55◦ in

the healthy case and to 35◦ and 54◦ in the pathological case.
The material constants c̃0 and c1 were initially fixed to values
that correspond to the case where Tθθ : Tll = 0.5 : 1 or the
case where Tθθ : Tll = 1 : 0.5 (see Table 2). Similarly, lower
and upper bounds defined on each parameter were chosen
in agreement with previous calculations: θI

0 ∈ [1◦
;44◦

], θII
0 ∈

[46◦
;90◦

], c̃0 ∈ [0;0.1] N mm−1 and c1 ∈ [10;100] in the AA
case, c̃0 ∈ [0;4 10−4

] Nmm−1 and c1 ∈ [60;80] in the AAA case.
Results that are revealed thereafter highlight a mechanical
behaviour very different from the predictions of the one-layer
solution, at both macroscopic and microscopic scales.

• Macroscopic scale— Fig. 6 displays the predictions of the
bi-layers solution together with the reference experimental
data for both AA and AAA specimens, in terms of
tension–elongation curves (τθθ − λθθ, τll − λll), elongation
paths (λll, λθθ) and Piola–Kirchhoff tension ratios Tθθ : Tll.
The first-order optimality value amounts to 7 · 10−6 in
the AA case and 4 · 10−6 in the AAA case. Whatever
the considered tension component (τθθ or τll), this figure
shows that the trends given by the proposed analytical
model, despite its simplicity and bearing in mind that
optimisation was run on only four constitutive parameters
(θI
0, θII

0 , c̃0, c1), fit rather well to the experimental data as
compared to the one-layer model predictions (see Fig. 5).
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Fig. 5 – Comparison between the prediction of the one-layer fibrous structure model (solid lines) and Vande Geest
experimental data (symbols) at the macroscale for healthy AA samples. Optimisation has been processed as an average on
both extreme bi-axial loads (Tθθ : Tll = 1 : 0.5 and 0.5 : 1). Optimised data have been obtained by imposing experimental
tension ratios Tθθ : Tll.
Even if noticeable deviations still occur for extreme bi-
axial loads, the average relative error ϵ̄ estimated in the
AA case (resp. in the AAA case) varies from 1.44% to 18.88%
(resp. 2.08% from to 28.75%) on curves τθθ − λθθ, and from
1.16% to 21.78% on curves τll − λll (resp. 2.72% from to
10.67%). Details of the relative errors ϵmax and ϵ̄ matched
to each experimental loading are listed in Table 3.

• Microscopic scale—The optimised microscopic mechanical
behaviour t̃(λ) is rather close to the microscopic responses
deduced from individual optimisations previously carried
out on the one-layer model, as illustrated in Fig. 4. A
stiffening of the microstructure is still predicted in the
pathological case but, compared to the one-layer solution,
this stiffening is slightly weaker and occurs at slightly
higher elongations: modulus Ẽc goes from 2.59 N mm−1

in the AA case to 4.60 N mm−1 in the AAA case,
whereas the critical stretch λ̃c drops from 1.109 to 1.068,
respectively. Material parameters (c̃0, c1) associated with
each optimised exponential-shaped response are listed in
Table 4, along with optimised fibre orientations θI

0 and θII
0 .

4. Discussion

To date, many constitutive theories aimed at predicting the
hyperelastic anisotropic behaviour of human AA and AAA
have been proposed. A large number of them are built up
within the framework of nonlinear continuum mechanics,
and attempt to integrate information on tissue composition
and internal structure. Therefore, recent constitutive laws
are based on a purely phenomenological description (Vande
Geest et al., 2006), or, most often, on a structurally motivated
Table 3 – Relative error between optimised data and
experimental data depicted in Fig. 6, mimicking
experimental tension ratios Tθθ : Tll for case AA (left) and
case AAA (right). Maximum value ϵmax, mean value ϵ̄.
All errors are in %, as defined in Eq. (8).

Case AA Case AAA
Tθθ : Tll ϵmax (%) ϵ̄ (%) ϵmax (%) ϵ̄ (%)

θθ

0.5:1 60.17 18.88 92.21 28.75
0.75:1 24.87 4.38 22.31 5.68
1:1 5.12 1.55 7.52 6.00
1:0.75 2.53 1.44 3.40 2.31
1:0.5 10.74 4.53 7.69 2.08

ll

0.5:1 19.53 4.35 10.26 5.26
0.75:1 2.92 1.16 3.87 2.72
1:1 8.95 1.25 11.09 3.05
1:0.75 26.56 4.98 20.90 6.43
1:0.5 78.66 21.78 44.46 10.67

approach inspired from histological evidence (Gasser et al.,
2006; Rodriguez et al., 2008; Basciano and Kleinstreuer,
2009; Ferruzzi et al., 2011). Doing so, anisotropy can thus
be formulated by including either a finite number of
collagen fibre preferred directions (Holzapfel et al., 2000,
2002; Basciano and Kleinstreuer, 2009; Ferruzzi et al., 2011)
or a continuous distribution accounting for fibre dispersion
(Zulliger et al., 2004; Driessen et al., 2004; Gasser et al., 2006;
Ehret and Itskov, 2007; Rodriguez et al., 2008). These prior
descriptions have allowed important computational advances
on fluid/structure interactions and recently demonstrated the
strong influence of the material anisotropy in the numerical
prediction of AAA risk of rupture (Rodriguez et al., 2008;
Rissland et al., 2009; Toungara et al., 2012). Nevertheless,
despite their ability to capture the typical macroscopic
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Fig. 6 – Comparison between the predictions of the bi-layer model (solid lines) and Vande Geest experimental data
(symbols) at the macroscopic scale for (a) AA and (b) AAA samples. Optimisation has been processed as an average on the
five investigated bi-axial loads. Optimised data are displayed here while imposing experimental Piola–Kirchhoff tension
ratios Tθθ : Tll.
Table 4 – Optimised microstructural parameters of the bi-layer composite material, obtained for optimisations run firstly
on both extreme ratios Tθθ : Tll, then on all five experimental bi-axial loads.

Case AA Case AAA
Tθθ : Tll c̃0 (Nmm−1)×10−4 c1 (−) θI

0(
◦) θII

0 (
◦) c̃0 (Nmm−1)×10−4 c1 (−) θI

0(
◦) θII

0 (
◦)

0.5:1 & 1:0.5 2.99 37.00 30 61 1.47 70.37 27 58
All 2.80 37.99 31 60 1.53 70.73 27 56
features of the arterial wall mechanics, existing constitutive
theories are not suitable to design a new composite fibre-
reinforced phantom of the aortic tissue. For that purpose, we
have proposed in this study an original approach elaborated
by means of a homogenisation technique applied to periodic
discrete media coupled with an optimisation process, which
allow the control of the macroscopic anisotropy by the
fibre arrangement, geometry and mechanical behaviour.
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In this specific theoretical framework, we have shown
that a simple bi-layers solution constituted by two parallel
lattices of equivalent fibres was necessary to mimic the
major hyperelastic anisotropic properties of healthy and
aneurysmal aortic tissues. An ideal microstructure has been
identified on the average experimental data carried out by
Vande Geest et al. (2006). This is discussed hereafter.

4.1. Optimal fibre architecture

The macroscopic anisotropy of the healthy AA tissue is
optimally captured by the bi-layers solution, if defined by two
parallel fibre lattices respectively orientated by ±31◦ and
±60◦ from the artery orthoradial direction in the stress-free
state. These results remain unchanged when modifying the
other geometrical specifics of both fibrous networks, such
as fibre lengths, tortuosities or cross-sections. This optimal
architecture is in quantitative agreement with the (sparse)
observations made by inspection of human AA histological
sections (Holzapfel et al., 2002; Holzapfel, 2006; Horny et al.,
2010). In particular, statistical analyses presented in Holzapfel
(2006) led to mean collagen fibre angles of about ±20◦, ±38◦

and ±59◦ in intimal, medial and adventitial strips of an AA
specimen excised on a human cadaver (female, 80 years-
old, primary disease: congestive cardiomyopathy). These
results were obtained by assuming a normal distribution and
symmetrical arrangement with respect to the orthoradial
direction. More recently, Horny et al. (2010) have analysed
histological sections obtained from abdominal aorta media of
a 36 year-old male donor and measured a continuous density
distribution of collagen fibre orientations, with a density
peak located nearly 30◦ (absolute value). Both collagen
and SMC nuclei analysis revealed density maxima between
[20◦

;50◦
]. All these histological data have been reported

in Fig. 7, together with the preferred fibre orientations
identified in the present work, after both individual andmean
optimisation procedures. This figure supports the assumption
that the bi-layers solution tends to mimic the microstructural
arrangement of both the medial and adventitial layers, so as to
behave mechanically with the appropriate anisotropy at the
macroscale.

This hypothesis is reinforced in the light of the five
individual optimisations output, which were preliminary
run with the one-layer solution (see Fig. 7). Indeed, the
latter demonstrated that an angle θI

0 below 45◦ was needed
to mimic stress–elongation curves measured at a bi-axial
loadings such as Tθθ : Tll > 1, whereas an angle θI

0 above
45◦ was necessary to mimic stress–elongation curves when
Tθθ : Tll < 1. This can explain why two degrees of freedom,
i.e. θI

0 < 45◦ and θII
0 > 45◦, are the least required by the

homogenised model to predict the different macroscopic
responses measured at inverse bi-axial loadings Tθθ : Tll =

α and Tθθ : Tll = 1/α (α being an arbitrary ratio, α ≠ 1).
This feature is consistent with the layer-specific properties
of arterial tissue, as identified by Holzapfel et al. (2005) in
the case of human coronary arteries. In this study, individual
medial and adventitial strips were subjected to cyclic quasi-
static uniaxial tensile tests in the longitudinal and orthoradial
directions. Interestingly, adventitia samples orientated in the
longitudinal direction exhibited a tendency to be stiffer than
Fig. 7 – Comparison between the fibre orientations θI
0

predicted by the one-layer model (individual optimisations,
symbols), θI

0 and θII
0 predicted by the bi-layer model (mean

optimisation on the five experimental loading paths, solid
lines), and histological data reported by Holzapfel (2006)
[ref1] and Horny et al. (2010) [ref2] (dashed lines). (top) AA
case, (bottom) AAA case.

the corresponding samples in the orthoradial direction (thus
requiring θII

0 > 45◦ in our modelling), whereas the opposite
was observed for the media samples (thus requiring θI

0 <

45◦). Therefore, although the media is commonly referred
as the main mechanically relevant arterial layer, our results
suggest instead that both media and adventitia layers should
be of greater importance to generate a relevant macroscopic
arterial anisotropy in response to (non-equi) bi-axial loadings.

Consequently, according to the present modelling
assumptions, a composite material that was limited to a
single preferred fibre orientation could not reproduce the
intended anisotropic behaviour evidenced for two inverse
ratios Tθθ : Tll = α and Tθθ : Tll = 1/α (α ≠ 1). In particu-
lar, a ±45◦ fibre-orientation in the one-layer model (mimick-
ing the media-layer mechanical contribution alone) would not
be able to predict any of the relevant anisotropic effects typ-
ically observed in aortic mechanics, as illustrated in Fig. 5.
This feature clearly contrasts with the predictions of previous
phenomenological approaches such as the two-fibre family
model proposed by Basciano and Kleinstreuer (2009), where
the angle value does not have the same immediate physical
interpretability (see Fig. 3 therein).

4.2. Optimal fibre mechanical behaviour

Together with the fibre orientations, an optimal microscopic
tension per unit of length t̃(λ) has been found from
the adjustment on the bi-axial mechanical data, allowing
multiple available choices for the last couple (t(λ), l0) to be
determined. Several technical solutions can be imagined in
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order to satisfy the optimised function t̃(λ): single straight
fibres, single wavy fibres, complex straight or wavy yarns. . . .
In what follows, the two first solutions are considered.

4.2.1. Straight fibres
We first consider that the lattice consists in using straight
fibres of initial diameter df0 and initial length lf0. Under
the incompressibility assumption (here stated for simplicity),
tension t̃ is a function of the fibre initial cross-section Sf0,

initial length lf0, stretch λ and Cauchy stress σf, so that

t̃ = (Sf0σf)/(lf0λ2). Therefore, the optimisation output remains

unchanged when modifying the triplet (Sf0, lf0, σf), provided
that the latter relation is conserved. Hence, depending on
the microstructure and constitutive parameters (Sf0, lf0, σf),
various types of fibre mechanical behaviours are potentially
good candidates to constitute the optimised fibrous lattices.
To better illustrate this, we have plotted in Fig. 8 the available
mechanical behaviour of the fibre bulk material, i.e. σf(λ), for
various fibre lengths lf0 and diameters df0. In particular, by

considering a length lf0 between 1 to 10 mm and a diameter

fixed at df0 = 0.15 mm (Fig. 8(a)), the optimal materials display
an elastic modulus Ec ranging from 69 to 689 MPa in the
healthy case, and from 111 to 1115 MPa in the pathological
case at λ = λ̃c, as assessed in Section 3.2. These moduli rise
from 315 to 3151 MPa in the healthy case, and from 422 to
4221 MPa in the pathological case, if evaluated at the end of
the loads. Notice that this point is of primary interest prior to
the material manufacturing step, by covering a wide choice of
microstructural parameters that could help solving potential
technological constraints. Nevertheless, due to the high
non-linearity of the adjusted microstructural mechanical
behaviour (typical J-shape curve), the selection of appropriate
monofilament candidates constitutes a challenging task,
which could not be achieved using usual metal, ceramic
or polymer fibres. Indeed, the latter are characterised by
linear elastic stress–strain responses over the concerned
stress range. Even polymeric or metallic materials which
exhibit a non-linear reversible mechanical behaviour such
as elastomers or shape memory alloys (SMAs) could hardly
be suitable to reproduce the target J-shape response under
this manufacturing solution (i.e. bulk monofilaments of
technically feasible diameters). In particular, superelastic
SMAs are characterised by a rather low stress-induced
martensitic transformation elongation (≈1.05 in tension) as
compared to the critical elongation λ̃c identified in case AA
(≈1.11). Also, before exhibiting a J-shape-like response, SMAs
display an initial elastic domain up to very high stress levels
(≈500 MPa) (Orgéas and Favier, 1998; Otsuka and Ren, 2005;
Barney et al., 2011). As to bulk elastomers, their critical
elongation is typically found to be over 1.50, that is, far beyond
the target one (Meunier et al., 2008).

4.2.2. Wavy fibres
We consider now another interesting and simple solution,
i.e. a lattice which is made up of elastic wavy fibres of
Young modulus Ef, initial diameter df0, initial length lf0, initial

tortuosity ξ0 = lf0/l0 and initial curvature along its curvilinear

abscissa s, κf0(s) (see Fig. 9). The mechanical response of
such curved fibres, when stretched at their extremities,
Fig. 8 – Influence of the microstructure parameters on the
optimised mechanical behaviour of the fibre as predicted
by the bi-layer model. Influence of (top) fibre length lf0,

varied between 1 and 10 mm with fixed df0 = 0.15 mm;

(bottom) fibre diameter df0, varied between 0.10 and

0.50 mm with fixed lf0 = 1 mm. One of the two lattices (REC)
is sketched in the upper graph.

Fig. 9 – Comparison between the optimised microscopic
mechanical behaviour t̃ − λ predicted by the bi-layer model
and that predicted by the wavy fibres model described in
Kabla and Mahadevan (2007) [ref1], with lattice length
l0 = 2 mm, fibre stiffness B = 0.0085 MPa mm4 and an

optimised value of fibre length lf0 (2.30 mm for the AA case
and 2.19 mm for AAA case). One of the two lattices (REC) is
sketched in the graph.

is dominated by the unbending of the initially curved
regions, at least until the fibres become nearly straight.
By assuming that fibres are inextensible (a reasonnable
assumption until the fibres are nearly straight), Kabla and
Mahadevan (2007) have shown that the fibre tortuosity ξ = lf/l

could be related to the tension t by the following analytical
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expression:

1
ξ

= λ
1
ξ0

= 1 −


k

A2
kk2

4


t
B + k2

2 , (9)

which is valid for a initial tortuosity ξ0 (i.e. when t = 0)

below 1.18. In this expression, B = Efπdf0
4
/64 is the bending

stiffness, Ak and k are parameters which characterise the
amplitude and the wavelength of the curvature spectrum:
κf0 =


k Ak cos(ks + φk), k = 2πn/lf0, n ∈ N. In the present

work, the above relation was adjusted on the microscopic
tension t versus λ curves in the particular case where n = 1
and φk = 0. Therefore, the tension t(λ) can be determined
knowing three parameters only: the initial length of the
lattice l0 (or the initial tortuosity ξ0 of the fibres), the
initial fibre length lf0 and the bending stiffness B. The lattice
parameter l0 was set to a representative value of 2 mm
and the stiffness B was fixed to 0.0085 MPa mm4. Obviously,
this bending stiffness can be achieved using different
potential couples (df0, Ef). In particular, the same value is
obtained using linear elastic metal, ceramic or polymer
monofilaments, such as steel wires (30 µm,200 GPa), glass
fibres (40 µm,70 GPa) or fluorocarbon fibres commonly used as
fishing wires (0.10 mm, 2000 MPa) for instance. An illustrative
adjustment of Eq. (9) on microscopic tension t(λ) has been
performed under such assumptions. This is illustrated in
Fig. 9, showing that these types of wavy fibre could be
good candidates: a rather good agreement is obtained for
the AA and AAA cases (this was obtained by considering
an optimal fibre length lf0 of 2.30 mm and 2.19 mm,
respectively).

5. Conclusion and future work

The objective of this study was to propose a new theoretical
framework, devoted to create a new material model
mimicking the hyperelastic anisotropic properties of healthy
and aneurysmal abdominal aortic tissue. A first attempt
characterised by a simple microstructure and using an
original homogenisation method has been proposed. Average
bi-axial tensile data carried out by Vande Geest et al. (2006)
have been chosen as a reference to identify the mechanical
behaviour of the biological tissue at the macroscopic scale.
Two theoretical models have been optimised on five bi-axial
tension ratios, representative of the loading in aortic tissue:
a one-layer model comprising a single fibre lattice embedded
into an elastomeric matrix, and a bi-layer model constituted
by two mechanically equivalent fibre lattices. It was first
shown that a composite constituted by only a single lattice of
fibres was not sufficient to describe all the experimental data,
whereas a quantitative agreement between measurements
and theoretical predictions was obtained by using the bi-layer
model. This bi-layer model depends on five parameters only,
four of them are related to the fibrous lattices (θI

0, θII
0 , c̃0, c1),

the last one is related to the elastomeric matrix (cmem0 ).
An ideal microstructural architecture and optimal fibre
mechanical behaviours have been proposed, which provide
a new insight into the structural mechanisms underlying
the anisotropic behaviour of the aorta. In future work, the
microstructural parameter dependency with gender and age
should be identified on patient-specific data and compared to
predictions of previous phenomenological models. Searching
for appropriate fibre and matrix candidates corresponding
to the adjusted microstructure is the next challenging
task. Regarding the matrix, standard silicone elastomers
could be relevant candidates, for example. Regarding the
fibrous structure which governs the overall mechanical
behaviour of the considered composite membranes, we have
shown that the use of bulk and straight monofilaments
was hardly conceivable using either linear elastic metal,
ceramic or polymer materials, or even elastomers or
memory shape alloys. However, the use of composite fibres
could be a relevant way to overcome this difficulty. Also,
this study demonstrated that linear elastic materials may
however be used provided a proper fibrous architecture is
considered, such as a wavy substructure for instance. In
light of this work, more complex wavy yarns could also
be envisaged as a further successful technical solution.
Finally, experimental tests on composite material samples
will be conducted in order to validate the different model
assumptions.
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