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Summary
Modelling the physical behaviour of fibrous materials still remains a great chal-
lenge because it requires to evaluate the inner structure of the different phases at
the phase scale (fibre or matrix) and the at constituent scale (fibre). X-ray com-
puted tomography (CT) imaging can help to characterize and to model these
structures, since it allows separating the phases, based on the grey level of CT
scans. However, once the fibrous phase has been isolated, automatically separat-
ing the fibres from each other is still very challenging. This work aims at propos-
ing a method which allows separating the fibres and localizing the fibre–fibre
contacts for various fibres geometries, that is: straight or woven fibres, with cir-
cular or non-circular cross sections, in a way that is independent of the fibres
orientations. This method uses the local orientation of the structure formed by
the fibrous phase and then introduces the misorientation angle. The threshold
of this angle is the only parameter required to separate the fibres. This paper
investigates the efficiency of the proposed algorithm in various conditions, for
instance by changing the image resolution or the fibre tortuosity on synthetic
images. Finally, the proposed algorithm is applied to real images or samplesmade
up of synthetic solid fibres.

KEYWORDS
3D fibrousmaterials, contact identification, fibre separation,microstructural descriptors, X-ray
tomography

Notations

�̃� Misorientation angle.
�̄�th Threshold value on �̃�.

dc𝑃(t𝑖) Half-chord length in 𝑃 along t𝑖 .
𝒟iso Isotropic dilation operator.
𝒟|| Dilation operator parallel to ū.
𝐞𝑛 n-th direction associated to the reference frame.
𝐅𝑘 Set of voxels belonging to the fibre k.
𝐈𝑃 Inertia matrix in P ∈ Ωf .
𝜆 Slenderness ratio.
𝑛𝑡 Number of investigated values of t𝑖 .

𝑛𝑓 Number of identified fibres.
𝑛orph Number of voxels in Ωorph.

Ωf Fibrous phase.
Ωf

mult
Multiple points, resulting from the dilatation oper-
ation.

Ωorph Subset of voxels in Ωf which are not allocated to
any fibre.

𝑃 Considered voxel in Ωf .
𝜓 Azimuth angle.
𝑟 Mean fibre radius.
𝜃 Elevation angle (latitude).

J. Microsc. 2022;1–20. © 2022 Royal Microscopical Society 1wileyonlinelibrary.com/journal/jmi

https://orcid.org/0000-0003-0306-1418
mailto:sabine.rollandduroscoat@3sr-grenoble.fr
https://wileyonlinelibrary.com/journal/jmi


2 DEPRIESTER et al.

𝐭𝑖 i-th computation direction for dc𝑃(t𝑖)
ū Mean orientation of a single fibre.

𝐮I
𝑃
Minor axis of the inertia matrix I𝑃.

subscripts: Voxel index (P) or fibre index (𝑘)
superscripts: Computational direction index (𝑖) or eigen-

value indices (I, II and III)

1 INTRODUCTION

It is well known that the macroscopic behaviour of fibrous
materials is inherited from their microscopic composition
and microstructure.1 Their physical properties depend on
the volume fraction of fibres but also on their geome-
tries and 3D spatial repartitions (orientation and fibre–
fibre contacts). Their microstructures have been studied
for the last 20 years using X-ray microtomography.2–4 This
technique allows imaging the inner structure of materials
that are opaque to visible light and gives valuable infor-
mation about the 3D spatial distribution of each phase.
Nevertheless, the analysis of fibre–fibre contacts and the
geometrical characterization of the fibres is still chal-
lenging because it requires to numerically separate the
fibres from computed tomography (CT) images. For soli5–7
Another method consists in first extracting the centrelines
of the fibres, also called skeletonization algorithm.8 Usu-
ally, the skeleton is defined by a series of control points and
a piecewise-defined and smooth function (e.g. splines).
Once the skeleton is computed, the main branches can be
used to define each fibre. The skeletonization can be made
manually9 or automatically.10,11 In the general case, one
would use the 3D euclidean distance map12,13 or homo-
topic thinning14–16 to skeletonize the fibrous phase. How-
ever, skeleton-based methods are restricted to low volume
fraction and fibres exhibiting nearly isotropic cross sec-
tions. For hollowed fibres, such as wood pulp fibres, spe-
cific algorithm may be used, usually based on the lumen
tracking.17,18 In more complex fibrous media, other meth-
ods are based on the local orientation of the structure.
Some authors19,20 use grey level images for evaluating a
structure tensor, computed from the convolution of Gaus-
sian distributions in the vicinity of each considered voxel.
Eberhardt and Clarke21 used the chord lengths whereas
Naouar et al.22 computed the grey level co-occurrence
matrix (GLC Matrix).23 Miletić et al.24 used the greyscale
gradient of the images to track the surface of each fibre.
In binarized images, orientation characterization is usu-
ally based on the morphologies of the objects. Sandau and
Ohser25 proposed to evaluate the local orientation from the
oriented chord lengths. Some authors used the lastmethod
to compute either the local inertia matrices26 or the struc-
ture tensor27. Miettinen et al.28 also used the Gaussian
convolution to compute the structure tensor from bina-

rized images. In each method resulting in a structure ten-
sor or an inertia matrix, the local orientation can be evalu-
ated by solving the eigenvalue problem. Once the local ori-
entations are characterized, the separation of the fibres is
usually made based on the local changes of these orienta-
tions. Naouar et al.22 used the homogeneity parameter29 to
separate warp and weft yarns in CT grey-level images of a
3D textile. Viguié et al.27 evaluated the local change (called
‘mean angular deviation’) along the horizontal plane of
this axis on binarized images. Thus, it was possible to sep-
arate the fibre in CT images by thresholding the mean
angular deviation. After separation, the fibres were fully
reconstructed using a recursive anisotropic dilation (dila-
tion along the mean fibre direction). This method lead to
valuable results on various media but it was still restricted
to networks with planar fibre orientations.
It is worth mentioning that recent advances in artificial

intelligence (AI) have brought novel techniques for auto-
matic detection of shapes or patterns in 2D or 3D images;
still, only few authors30,31 used convolution neural net-
work to separate fibres in CT images. This is because of the
large amount of data required for training the neural net-
work.
In this work, the separation criterion proposed byViguié

et al.27 was revisited for fully 3D-oriented medium. Then,
the dilation procedure used by the last authors was also
improved tomake it valid for either straight orwoven fibres
with 3D local orientation. We first introduce the separa-
tion criterion, the reconstruction algorithm and somemet-
rics applied to the fibres. In a second task, we investigate
the influence of the parameters used for the separation and
the reconstruction of the fibres on the resulting geometry.
Then, the proposed algorithm is applied to different media
in order to evaluate its ability to separate the fibres in dif-
ferent conditions.

2 METHOD

2.1 Example of fibrous medium

In this section, the fibrous medium illustrated in Figure 1
is used as an example of the proposed algorithm. It is
constituted of copper fibres with a circular cross sec-
tion (diameter 200 𝜇m ≈ 12 vx) and a mean length of
about 10 mm, as detailed elsewhere.13 Consider that CT
image as a 3D regular grid of points (voxels), which belong
either to the matrix phase or the fibrous phase. Let Ωf be
the subset of voxels corresponding to the fibrous phase.
The 3D images are stacks of 2D images (slices) where
𝑒1 and 𝑒2 denote the directions associated to each slice,
whereas 𝑒3 denotes the stacking direction. Since the pro-
posed approach is independent of the voxel size, all
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F IGURE 1 Example of a two-phased fibrous material imaged
by X-ray tomography: three-dimensional surface rendering of the
binarized image. The fibrous phase is represented as a red solid
volume whereas the matrix phase is set to transparent. Dimensions
are expressed in voxels

dimensions shown in figures are given in voxels through-
out this paper.

2.2 Description of the overall algorithm

Figure 2 represents the method to identify the fibres and
the fibre–fibre contacts from a binarized CT image, that is
a 3D image where the fibrous phase is already identified.
This algorithm is composed of three steps: step○1 refers to
the separation of fibres, step○2 refers to the reconstruction
of the fibres and step○3 deals with the analyses of contacts
and fibres geometries.

2.3 Step 1: Fibres Separation

2.3.1 Computation of the chord lengths

Let 𝐭𝑖 be a given direction and 𝑡𝑖
1
, 𝑡𝑖

2
and 𝑡𝑖

3
its coordi-

nates in the reference frame (𝐭𝑖 = 𝑡𝑖
1
𝑒1 + 𝑡𝑖

2
𝑒2 + 𝑡𝑖

3
𝑒3). Con-

sider a voxel 𝑃 ∈ Ωf ; the distance from 𝑃 to the matrix
along 𝐭𝑖 , denoted 𝑑𝑃(𝐭

𝑖) below, is computed using the
method proposed by Altendorf and Jeulin.26 Appendix A
provides some details about this method. These distances
can be used to compute the half-chord length in 𝑃, denoted
d𝑐𝑃(t

𝑖), as defined by Sandau and Ohser25:

∀𝑖 = 1,… , 𝑛𝑡 d𝑐𝑃(t
𝑖) =

𝑑𝑃(𝐭
𝑖) + 𝑑𝑃(−𝐭𝑖)

2
, (1)

where 𝑛𝑡 denotes the number of investigated directions
𝐭𝑖 .

2.3.2 Local orientation

In 𝑃 ∈ Ωf , Altendorf and Jeulin26 define the inertia matrix
𝐈𝑃 such that:

𝐈𝑃 =
1

𝑛𝑡

𝑛𝑡∑
𝑖=1

(
d𝑐𝑃(t

𝑖)
)2

𝑴(𝐭𝑖) (2)

with:

𝑴(𝐭𝑖) =
1‖𝐭𝑖‖2

⎡⎢⎢⎢⎣
𝑡𝑖
2

2
+ 𝑡𝑖

3

2
−𝑡𝑖

1
𝑡𝑖
2

−𝑡𝑖
1
𝑡𝑖
3

−𝑡𝑖
1
𝑡𝑖
2

𝑡𝑖
1

2
+ 𝑡𝑖

3

2
−𝑡𝑖

2
𝑡𝑖
3

−𝑡𝑖
1
𝑡𝑖
3

−𝑡𝑖
2
𝑡𝑖
3

𝑡𝑖
1

2
+ 𝑡𝑖

2

2

⎤⎥⎥⎥⎦ , (3)

where ‖𝐭𝑖‖ denotes the euclidean norm of 𝐭𝑖 .
Let 𝐼I

𝑃
≤𝐼II

𝑃
≤𝐼III

𝑃
be the eigenvalues of 𝐈𝑃 and 𝐮I

𝑃
, 𝐮II

𝑃
, 𝐮II

𝑃

the corresponding normalized eigenvectors. For a given
fibre, its orientation is characterized by its lowest inertia
momentum. In other words, the minor axis of 𝐈𝑃 (denoted
𝐮I

𝑃
above) gives the local orientation of the fibrous phase

in 𝑃. Figure 2B illustrates the local orientations 𝐮I
𝑃
(white

arrows) computed in the medium introduced in Figure 1.
It is clear that, away from the contact zones, local orienta-
tions appear to be fairly aligned with the macroscopic ori-
entation of each fibre. On the contrary, contact zones (e.g.
with coordinates around (35,95) in Figure 2D) are charac-
terized by large changes in the local orientations.

2.3.3 Misorientation angle

For a given voxel 𝑃 ∈ Ωf , let N𝑃 be the subset of vox-
els in Ωf and in contact with 𝑃, considering its 26-
connected neighbourhood. Let �̃� be the misorientation
angle, expressed in radian-per-voxel, so that:

�̃�𝑃 =
1

�̃�

∑
𝑄∈N𝑃

∠
(
𝐮I

𝑃
, 𝐮I

𝑄

)
‖𝐏𝐐‖ with ∶ �̃� =

∑
𝑃∈N𝑃

1‖𝐏𝐐‖ , (4)

where ∠(𝐮I
𝑃
, 𝐮I

𝑄
) denotes the bearing angle between 𝐮I

𝑃

and 𝐮I
𝑄
. This definition of the misorientation angle is a 3D

generalization of the mean angular deviation introduced
by Viguié et al.27 Here, the angular values are weighted by
the inverse of the distance from the central point. Figure 2B
illustrates the misorientation map (colourmap), evidenc-
ing the previous observations (e.g. coordinates around
(35,95)). In the investigated media, this misorientation
angle is typically larger than 5◦ near contacts. On the



4 DEPRIESTER et al.

F IGURE 2 Scheme of the overall proposed algorithm to separate the fibres, reconstruct them, track the fibre–fibre contacts and
characterize the fibre geometries. The first block (which aims to separate the fibrous phase from the matrix phase) is not detailed in this work.
Despite the fact that all the steps are computed in 3D, the intermediate steps are illustrated in this figure as 2D slices (at 𝑧 = 80) taken from
the example medium (see Figure 1): (A) threshold on the grey level image, (B) misorientation angle, (C) threshold on the misorientation and
results from (D) labelling then (E) reconstruction

opposite, the misorientation angle is close to 0◦ away from
the contact zones.

2.3.4 Thresholding and labelling

Based on the previous considerations, one can separate
fibres in contact using a threshold value �̄�th on �̃�, as illus-
trated in Figure 2C. Once the fibres are separated, each one
can be considered as a set of voxels, defined as a 3D con-
nected region. Therefore, the fibres can be labelled using a

standard flood-fill algorithm,32 associating a unique inte-
ger to each connected region, as illustrated in Figure 2D.
In this paper, F𝑘 and 𝑛f denote the subset of voxels which
belong to the fibre labelled 𝑘 and the number of identi-
fied fibres, respectively. When thresholding �̃�, some very
small disconnected regions may arise. In order to remove
these unrealistic outliers from the labelled regions, regions
smaller than a given number of voxels were discarded. The
number of discarded regions and their associated volumes
mainly depend on the image resolution and the number
of contacts.
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F IGURE 3 Schematic representation of the Boolean operations used for dilation: two fibres are represented (F1 and F2); the dilation is
restricted toΩorph, as defined in (5). (A) At the 𝑖-th dilation step and (B) results at the next one. The set Ωf

mult
represents the points that belong

to both the dilated objects (introduced in Section 2.4.2)

F IGURE 4 Schematic representation of applying either (A) isotropic or (B) longitudinal dilations on a set of voxels (represented in
white). The result from dilation is represented in green. In each case, the structuring element33 is represented (left-hand side)

2.4 Step 2: Fibre reconstruction

As illustrated in Figure 2D, at this stage of the algorithm,
about 30% of the voxels belonging to the fibrous phase are
not affected to a labelled fibre. Let Ωorph be this set, con-
sisting in 𝑛orph orphan voxels. To allocate these voxels to
a fibre, recursive dilations27 on each identified fibre 𝑘 are
applied:

F
(𝑖+1)

𝑘
= F

(𝑖)

𝑘
∪
(
𝒟
(
F

(𝑖)

𝑘

)
∩ Ωorph

(𝑖)
)
, (5)

where 𝑖 is the iteration step and 𝒟 is the dilation opera-
tor, described hereafter. Figure 3 illustrates the previous
equation as aVenn diagram. This operation is iterated until
Ωorph is stabilized. Algorithm 1 gives the pseudo-code asso-
ciated to this procedure. A dilation operation is defined for

a given kernel. The two types of kernels used in this paper,
illustrated in Figure 4, are described below.

Algorithm 1 Iterative fibre growth: this operation is performed
until the number of elements in Ωorph (𝑛orph) converges.

Ωorph ← orphan voxels
𝑛orph ← card(Ωorph)

while 𝑛orph ≠ constant do
for all 𝑘 = 1 to 𝑛f do
dilation of F𝑘 (eq. 5)

end for
Ωorph ← orphan voxels
𝑛orph ← card(Ωorph)

end while
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F IGURE 5 Evolution of the fraction of orphan voxels among all the fibrous phase, as a function of the iteration step, when applying
longitudinal or isotropic dilations

2.4.1 Isotropic and longitudinal dilations

The first kernel is an isotropic kernel constituted of 6-
connected neighbourhood. The effect of using the isotropic
kernel for dilation is schematically illustrated in Figure 4A.
The structuring element with planar orientation used

by Viguié et al.27 was improved to make it suitable for
full 3D orientations. Thanks to the mean orientation ū of
each identified fibre (see Section 2.5.1 for details), one can
construct a structuring element parallel to ū. The longi-
tudinal dilation operator, denoted 𝒟||(F𝑘), aims at dilat-
ing the fibre F𝑘 along its mean direction ū𝑘. The effect of
using the longitudinal dilation is schematically illustrated
in Figure 4B. For a considered voxel, the structuring ele-
ment used for the longitudinal dilation is composed of a
series of elements parallel to ū, as illustrated in Figure 4B.
In this work, the range used for the longitudinal dilation
was 5 vx (as shown in the last figure) in order to reduce the
aliasing effects.
The evolution of the fraction of orphan voxels at each

iteration step is plotted in Figure 5, for each dilation
operator. It appears that the early iteration steps of the
isotropic dilation are slower than the ones of longitudi-
nal dilations, mainly because of the size of structuring
elements used for the dilations. On the contrary, at the
end of the process, the longitudinal dilation leaves some
orphan voxels whereas 𝑛orph converges towards 0 when
using the isotropic dilations. The differences between
the two kinds of dilation are discussed in Section 3.2.
Figure 5 also illustrates the results from longitudinal dila-
tion after separation on the example medium (introduced
in Figure 1) in terms of geometry. According to this

figure, it is clear that the procedure quickly converges
towards the final geometry as 𝑛orph converges towards its
final value.

2.4.2 Multiple points

When recursively applying the dilation operation, some
points may be allocated to several fibres at once, as
schematically represented in Figure 3 and depicted in
Figure 6. LetΩf

mult
be this set of multiple points, as defined

F IGURE 6 Multiple points resulting from the recursive
dilations on copper fibres (1471 points)
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below:

Ωf
mult

=

𝑛f⋃
𝑘=1

(
𝑛f⋃

𝑘′=𝑘+1

(F𝑘 ∩ F𝑘′)

)
. (6)

The proposed method to allocate these multiple points
in a deterministic manner is the ‘least-misorientations
method’. To ascribe these voxels to a single fibre, the princi-
ple is first to temporary allocate the multiple points to one
fibre, then to recompute the local orientations and themis-
orientations (as defined in Section 2.3.2) in the considered
fibre. The same is done with all candidate fibres, allow-
ing to evaluate its resulting misorientations for each fibre.
Finally, this voxel is allocated to the fibre leading to its least
misorientation. In other words, multiple points are allo-
cated to the fibres in a way that maximizes the straightness
of each fibre. This procedure is summed up inAlgorithm 2.

Algorithm 2 Least-misorientation method. 𝐴𝑃,𝑘 denotes the
tabular data, containing the misorientation value in 𝑃

assuming that 𝑃 ∈ F𝑘 .
for all 𝑘 = 1 to 𝑛f do

Ftmp ← F𝑘 ∪ Ωf
mult

// Consider that Ωf
mult

belongs to F𝑘

Compute �̃�, considering only Ftmp

for all 𝑃 ∈ Ωf
mult

do
𝐴𝑃,𝑘 ← �̃�𝑃 // Store the resulting misorientation at 𝑃

end for
end for
for all 𝑃 ∈ Ωf

mult
do

𝐾 ← argmin
𝑘
(𝐴𝑃,𝑘) // 𝑃 ∈ F𝐾 minimizes the

misorientation
F𝐾 ← F𝐾 ∪ {𝑃} // Add 𝑃 to Fibre 𝐾

end for

2.5 Step 3: Geometrical analyses

2.5.1 Mean orientation of a fibre

Themethod proposed byWoodcock andNaylor34 was used
to evaluate the mean orientation of each fibre. Let 𝐀𝑘 be
the mean fabric tensor of fibre F𝑘, so that:

𝐀𝑘 =
1

𝑛𝑘

∑
𝑃∈F𝑘

𝐮I
𝑃
⊗ 𝐮I

𝑃
, (7)

where 𝑛𝑘 is the number of voxels in F𝑘 and⊗ denotes the
tensorial product. The largest eigenvalue of 𝐀𝑘 is an esti-
mate of the distribution variance (comprised between 1∕3

and 1) and its associated eigenvector, denoted ū𝑘 below, is
an estimate of the mean orientation of F𝑘.19

2.5.2 Mean radius

Consider a voxel 𝑃 ∈ Ωf and its parent fibre F𝑘 with mean
orientation ū𝑘. For slightly woven fibres, Altendorf and
Jeulin26 give the following equation to evaluate the local
radius of the fibre F𝑘 in 𝑃, given by the half-chord length
measured along 𝐭𝑖:

∀𝑃 ∈ F𝑘, 𝑟𝑃(𝐭
𝑖) = d𝑐𝑃(t

𝑖) sin 𝜑𝑖
𝑘

(8)

with 𝜑𝑖
𝑘
= ∠(ū𝑘, 𝐭

𝑖). The more parallel 𝐭𝑖 and ū𝑘 are, the
less the evaluation of 𝑟𝑃(𝐭𝑖) is relevant. Hence, the evalu-
ation of the mean radius was made by weighting the local
radii based on the sine of 𝜑𝑖

𝑘
:

∀𝑃 ∈ F𝑘, 𝑟𝑃 =
1∑

𝑖
sin 𝜑𝑖

𝑘

𝑛𝑡∑
𝑖=1

𝑟𝑃(𝐭
𝑖) sin 𝜑𝑖

𝑘
. (9)

Let 𝑟𝑘 be the mean radius of F𝑘. It comes:

𝑟𝑘 =
1

𝑛𝑘

∑
𝑃∈F𝑘

𝑟𝑃. (10)

2.5.3 Contact identification

Let F𝑖 and F𝑗 be the volumes associated to two distinct
fibres 𝑖 and 𝑗. The set of voxels which belong to the fibre
𝑖 and are in contact with the fibre 𝑗 can be defined as fol-
lows:

C𝑖,𝑗 = F𝑖 ∩ 𝒟iso(F𝑗). (11)

3 CHOICE OF THE PARAMETERS OF
THE ALGORITHM

The objective of this section is to propose guidelines to use
the algorithm summarized in Section 2 and to gauge the
errors made on the identification of the fibres in terms of
geometry (length and diameter) and location (position and
orientation). For that purpose, the following methodology
is applied: (i) a synthetic medium, representative of one of
the various fibre networks mentioned in the introduction,
is generated, (ii) the influence of one parameter on the fibre
identification is gauged and (iii) guidelines are provided.
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F IGURE 7 Numerically generated medium: (A) 3D view of the hedgehog-like fibrous phase and (B) pole figure of the mean orientation
of each fibre (stereographic projection)

3.1 Computational directions

3.1.1 Example medium

In order to investigate the effect of increasing the number
of computational directions of the chord length (denoted
𝑛𝑡 in this paper) on the computation of the mean orien-
tation, a ‘hedgehog-like’ fibrous medium was numerically
generated, as depicted in Figure 7A. In order to avoid the
influence of contacts on the evaluation of local orienta-
tions, each fibre of this hedgehog was not in contact to
each other. These fibres have a nominal length of 35 voxels
and two nominal radii are investigated, respectively, 3 and
5 voxels. Fibres were generated for several different orien-
tations, resulting in 133 individual fibres, as illustrated in
Figure 7B.
According to Altendorf and Jeulin,26 the computed

directions (𝐮I
𝑃
) undergo an attraction towards each direc-

tion 𝐭𝑖 . As a result, the set of investigated directions must
be balanced so that it leads to an isotropic bias. In other
words, the sum of the local inertia matrices, as defined
in (3), must be proportional to the identity matrix. Differ-
ent sets of computed directions were used for evaluating
the chord lengths in the hedgehog, resulting in 𝑛𝑡 rang-
ing from 13 to 61. These sets are schematically presented
in Appendix B (see Figure B1).

3.1.2 Mean orientations

The mean orientation of each fibre of the hedgehog was
evaluated according to the procedure detailed in Sec-
tion 2.5.1 with different values of 𝑛𝑡. Then, the calculated
mean orientations were compared to the theoretical ones,
as summed up in Figure 8. In this figure, (𝜓, 𝜃) denotes

the spherical coordinates (𝜓 stands for the azimuth angle
from 𝑒1, whereas 𝜃 denotes the elevation angles towards
𝑒3). In each case, the orientation of fibres lying along the
frame directions appears to be accurately evaluated. Since
these directions are parallel to the reference frame (see
Figure B1), this is in agreement with the theory introduced
by Altendorf and Jeulin.26 On the contrary, the other direc-
tions appear to lead towrong estimates, specially with 𝑛𝑡 =

13. With 𝑛𝑡 = 25, all directions characterized by 𝜃 = 30◦ or
60◦ appear to be well predicted but that with 𝜃 = 15◦, 45◦

and 75◦ lead to largest errors. 𝑛𝑡 = 37 gives better results
for the later orientations without worsening the evalua-
tion of other orientations. When 𝑛𝑡 = 49 and 61, it is clear
that all orientations (except the ones lying along the frame
directions) are not accurately evaluated. For the special
case 𝜃 = 0◦, some orientations appear to be 180◦ off the
theoretical ones; this is due to round-off errors and the
ambiguous azimuth angle for a horizontal fibre ((𝜓, 𝜃 =

0) ≡ (𝜓 + 𝜋, 𝜃 = 0) for non-signed orientations).
Figure 9A represents the mean and the largest angu-

lar errors between the computed orientations and the
theoretical ones for each value of 𝑛𝑡. This plot confirms
that the evaluation of the orientations of the hedgehog’s
fibres is better with 𝑛𝑡 = 37 than with 𝑛𝑡 = 49 and 61.
The same procedure was used on another ‘hedgehog-like’
medium with a nominal radius of 5 vx, evidencing the
same trend, as illustrated in Figure 9A (red bars). Since
the computation of the inertia matrices runs in linear time
with 𝑛𝑡, using 𝑛𝑡 = 37 appears to be the best compromise
between execution time and precision. Preliminary tests,
not described in this paper, were carried out with hedge-
hog of various steps. As a result, 𝑛𝑡 = 37 appears to pro-
duce the lowest error regardless the spacing of the hedge-
hog; thus, all analyses detailed below were done using
this value.
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F IGURE 8 Pole figure of the mean orientations of each fibre of the hedgehog (Figure 7), illustrating the influence of the number of
computational directions of the chord lengths: (A) 𝑛𝑡 = 13, (B) 𝑛𝑡 = 25, (C) 𝑛𝑡 = 37, (D) 𝑛𝑡 = 49 and (E) 𝑛𝑡 = 61. Blue crosses (x) represent the
computed orientations whereas the red circles (o) give the theoretical ones, as a comparison. For the sake of readability, the 𝜃 axis is not
shown (see Figure 7B for details)

(A) (B)

F IGURE 9 Results from the geometrical analyses on the hedgehog: (A) evolution of the mean angular error (darker bars) as a function
of 𝑛𝑡 , depending on the nominal fibre radius (𝑟), lighter bars give the largest angular error; (B) distribution of the fibres’ radii evaluated on the
hedgehog (with 𝑛𝑡 = 37), depending on the nominal radius

3.1.3 Mean radii

Since the orientation of each fibre is well computed, the
evaluation of the mean radius (detailed in Section 2.5.2)
can be done. With 𝑛𝑡 = 37, the computation of the mean

radii of the two aforementioned hedgehogs lead to the
distributions given in Figure 9B. For the fibres with a
nominal radius of 3 vx, the mean value of 𝑟 was 3.41 vx
(standard deviation: 0.19); for the fibres with a nominal
radius of 5 vx, the mean value of 𝑟 was 4.94 vx (standard
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F IGURE 10 Two straight cylindrical fibres (copper). (A) Fibrous phase and (B) separated fibres (�̄�th = 15◦) before dilation.

F IGURE 11 Results after (A) isotropic and (B) longitudinal dilations of the fibres presented in Figure 10. Details of the resulting cross
sections are given by the 2D sections (at 𝑥 = 63)

deviation: 0.24). Therefore, it appears that the radii arewell
computed in both cases, leading to slight overestimation
for smaller value.

3.2 Structuring element

3.2.1 Fibrous networks made up of straight
fibres

In order to investigate the influence of the structuring ele-
ment for the dilation algorithm (i.e. 𝒟 = 𝒟iso vs. 𝒟 =

𝒟|| in (5)) on the resulting geometries, we considered a
medium, characterized by two straight fibres with circu-
lar cross section, as illustrated in Figure 10A. These fibres
were separated using the separation procedure proposed in
this paper, as illustrated in Figure 10B.
After separation of the fibres (Figure 10B), they appear

to bewell defined, except near the contact zone. As a result,
fibres obtained using isotropic dilation are really similar to
the ones obtained using longitudinal dilation, as illustrated
in Figure 11. Details of the 2D sections illustrate the differ-
ences in terms of cross section of each fibre. The isotropic
dilation leads to the penetration of the green fibre into the
blue one.

3.2.2 Fibrous networks made up of woven
fibres

Now let us consider three wavy fibres, with circular cross
section, as illustrated in Figure 12A. They were separated

according to the same procedure, leading to the results pre-
sented in Figure 12B. The results obtained using isotropic
and longitudinal dilation are illustrated in Figures 12C and
12D, respectively. Thus, the differences are evidenced by
the remaining orphan voxels (see shaded regions), even
after the recursive dilations, when using the longitudinal
dilation. Figure 12D shows that the dilation of the green
fibre results in a flattened fibre.

3.2.3 Synthesis

As a conclusion, the following statements can be made:

∙ longitudinal dilation is recommended for straight fibres
because it retains the fibre morphology and leads to bet-
ter evaluation of the contacts (avoids penetration);

∙ isotropic dilation is recommended for wavy fibres
because it does not leave orphan voxels and does not flat-
ten the fibres.

3.3 Influence of the geometry

In order to assess the robustness of the proposed algorithm
against image quality and morphological parameters, two
fibres with cylindrical geometry (with radius 𝑟 = 10 vx), in
contact to each other, were generated with varying nomi-
nal angle (denoted 𝛽 below) between their axes. In addi-
tion, these geometries were generated for different values
of the slenderness ratio 𝜆 (ratio of length to the diame-
ter). Then, all these geometries were downsampled by a
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F IGURE 1 2 Woven cylindrical fibres: (A) binarized fibrous phase, (B) result from separation with �̄�th = 4◦ and reconstruction using (C)
isotropic or (D) longitudinal dilations. Shaded regions correspond to the remaining orphan voxels at the end of the recursive dilation
procedure

F IGURE 13 Examples of the generated geometries for the investigation of the influence of the image parameters on the separation: (A)
𝛽 = 3◦, 𝜆 = 2, not downsampled; (B) 𝛽 = 20◦, 𝜆 = 5, 𝑠 = 2 and (C) 𝛽 = 90◦, 𝜆 = 10, 𝑠 = 4

factor 2, 3 and 4. In the present section, 𝑠 denotes the down-
sampling factor (𝑠 = 1 corresponds to no downsampling
and 𝑠 = 𝑛 corresponds to retaining each 𝑛-th voxel on each
direction). Among all these sets, three geometries are illus-
trated in Figure 13. Table 1 gives the resulting geometrical
parameters (length and diameter) in each case. On each
geometry, attempts were made to separate the two fibres

using the method detailed in Section 2.3. In each case, the
largest thresholding value �̄�th leading to separation of the
fibres was recorded, as plotted in Figure 14.
For 𝜆 ≥ 3, �̄�th appears to be an increasing function of the

angle between the fibres. On the opposite, �̄�th appears to
randomly depend on 𝛽 when 𝜆 = 2. This result indicates
that the separation process somehow behaves randomly
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F IGURE 14 Largest values of �̄�th leading to the separation of the generated fibres, as a function of the angle between the two fibres 𝛽,
the slenderness ratio 𝜆 and the downsampling factor 𝑠

TABLE 1 Geometrical parameters (radius 𝑟 and length 𝓁, in
voxels) of the generated fibres, depending on the downsampling
factor 𝑠 and the slenderness ratio 𝜆

Downsampling factor
𝝀 1 2 3 4
2 𝑟: 10 5 3 2.5

𝓁: 40 20 12 10
3 𝑟: 10 5 3 2.5

𝓁: 60 30 18 15
5 𝑟: 10 5 3 2.5

𝓁: 100 50 30 25
10 𝑟: 10 5 3 2.5

𝓁: 200 100 60 50

when one attempts to separate short fibres. As a conclu-
sion, the present algorithm seems to work on fibres char-
acterized by 𝜆 ≥ 3.
On higher downsampling factor (𝑠 = 4), the separation

process cannot be performed with 𝛽 < 20◦, whatever the
slenderness ratio is. According to the geometrical param-
eters given in Table 1, it appears that a radius larger than
2.5 vx is required to ensure the ability of the present algo-
rithm to separate the fibres.

As the proposed algorithm is based on the local change
in fibre orientation, the separation of fibres nearly par-
allel to each other (𝛽 ∼ 0◦) is not possible with the pro-
posed algorithm. In this case, one should use other meth-
ods based on skeletonization.8–11

3.4 Wavy fibres: Influence of the wrap
angle

In order to investigate the ability of the algorithm to sep-
arate wavy fibres wrapped around each other, theoreti-
cal geometries were numerically generated, as presented
in Figure 15. In each case, the geometry consisted in two
fibres wrapped around each other, with a given wrap angle
𝛾 ∈ [0◦, 180◦], as detailed in Figure 15A. These geometries
were generated for different values of the fibre radius and
the wrap angle. In each case, the maximum value of �̄�th

resulting in the separation of the two fibres are reported in
Figure 15C.
When 𝛾 ≠ 0◦, the values of �̄�th appear to be almost con-

stant for a given radius, with mean values equal to 21.7◦,
17.8◦ and 15.2◦ if 𝑟 = 2.5 vx, 5 vx and 10 vx, respectively.
As a conclusion, this separation method is very efficient
on various morphologies of wavy touching fibres regard-
less the wrap angle.
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F IGURE 15 Separation of wavy touching fibres: (A) schematic view of the synthetic geometry, introducing the wrap angle and (B)
example of geometry with 𝛾 = 150◦ and 𝑟 = 10 vx; highest values of �̄�th leading to the separation of the fibres wrap around each other, as
functions of wrap angle mean fibre radius

3.5 General guidelines to use the
algorithm

Based on the previous results, the following guidelines can
be provided to ensure the ability of the proposed approach
to accurately separate and characterize the fibres:

∙ 𝑛𝑡 = 37 investigated directions for the computations
of chord lengths appears to be the best compromise
between execution time and precision;

∙ each fibre should have a diameter larger than 5 vx and a
slenderness ratio larger than 3;

∙ longitudinal dilation should be used for straight fibres,
since it keeps their straightness and avoids unrealistic
inter-penetration;

∙ isotropic dilation should be used for wavy fibres because
it leads to almost zero orphan voxels at the end of recur-
sive dilatations;

∙ wavy fibres can also be separated, as long as parts of
them are straight segments.

No guideline has been raised about the choice for �̄�th.
Since it is used as a global parameter (depending on the
type of fibrous network), one can simply find the adequate
value by trial-and-error.

4 APPLICATION: FIBRE
IDENTIFICATION IN VARIOUS FIBRE
NETWORKS

4.1 Considered media

In order to investigate the ability of the proposed algorithm
to separate and reconstruct the fibres on complex media,

CT images of various materials were used, as summed
up in Figure 16. These media were chosen to investigate
whether the proposed algorithm can be applied for fibre
identification in various volume fraction of fibres (e.g. A
vs. B), for various shapes of fibres’ cross sections (e.g. A vs.
C), for various fibres orientations distributions (e.g. A vs.
B), for straight and woven fibres (e.g. B vs. D) and even on
filament tows (E).
The fibrous medium (A) was constituted of short pieces

of nylon fibres of identical length.35 Medium (B) was con-
stituted of short carbon fibres of different lengths embed-
ded in a polymermatrix.Medium (C)was a sheetmoulding
compound (SMC) made up of planar random glass fibre
bundles.36 Medium (D) was imaged during an in situ bias
test of a woven textile (plain weave of metallic fibres with
circular cross sections). Medium (E) was an artificial 3D
image of a woven textile, where each yarn consisted in
a series of slender filaments with circular cross section.
This image was generated using the WeaveGeo module as
part of the Geodict software.37 Medium (A) was imaged
on TOMCAT beamline at the Swiss Light Source (SLS).
Medium (B) was imaged on ID19 beamline at the Euro-
pean Synchrotron Radiation Facility (ESRF). Media (C)
and (D) were imaged on a laboratory tomograph (3SR Lab,
RX Solutions apparatus). The structural properties of each
medium are detailed in Table 2. In each case, the threshold
value of the misorientation angle (�̄�th) used for separation
and the kernel used for dilations (𝒟) are given in this table.

4.2 Straight short fibres

Figure 17A represents the fibres identified in the medium
composed of nylon fibres (see Figure 16A). A total of 1318
distinct fibres were identified.
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F IGURE 16 3D images of the investigated media: (A) nylon fibres in candle gel, (B) carbon fibres in polymer matrix, (C) sheet moulding
compound, (D) woven textile with monofilament with circular cross section, (E) woven fabric (plain weave) with filament-based yarns
(synthetic)

TABLE 2 Properties of the media used as applications of the proposed approach, presented in Figure 16, and corresponding parameters
used for separation (�̄�th) and reconstruction (𝒟)

Material Volume fraction Nominal diameter �̄�𝐭𝐡 𝓓

(A) Nylon fibres 33.4% 16 vx 4◦ Longitudinal
(B) Carbon fibres 6.12% 11 vx 4◦ Longitudinal
(C) SMC 25.9% – 4◦ Longitudinal
(D) Woven fibres 5.76% 10 vx 10◦ Isotropic
(E) Woven tows of fibres 43.1% 300 fib./tow, fib.: 4 vx 8◦ Isotropic
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F IGURE 17 Result from separation of nylon fibres: (A) 3D representation and (B) pole figure illustrating the mean orientation of each
fibre; a unique colour is attributed to each fibre; dot size is related to the corresponding fibre length

F IGURE 18 Result from separation of carbon fibres: (A) 3D representation and (B) pole figure illustrating the mean orientation of each
fibre; a unique colour is attributed to each fibre; the dot size is related to the corresponding fibre length

The mean orientation of each fibre is presented in the
Pole Figure 17B. In this figure, the diameter of each dot
is related to the corresponding fibre length. One can see
a near transverse isotropic orientation distribution, with
almost all fibres nearly lying along the horizontal plane
(𝑥, 𝑦), with 𝜃 < 30◦. In Figure 17A, one can see that if two
fibres are in contact and nearly parallel to each other, they
cannot be separated. This is in accordance with the cases
corresponding to the lower values of 𝛽 in Section 3.3.

4.3 Polydisperse and randomly oriented
short fibres

Figure 18A represents carbon fibres (introduced in
Figure 16B) after separation, where 446 fibres were

identified. From this figure, it appears that the present
algorithm is able to separate randomly oriented fibres
(3D distribution), while that proposed by Viguié et al.27
is only efficient if fibres show a near-planar distribution.
Figure 18B represents the mean orientation of each
fibre (the dot size is related to the corresponding fibre
length), emphasizing that the orientation distribution is
fully 3D.

4.4 Sheet moulding compound

Figure 19 shows the identified fibres in the SMC. It appears
that most of the fibres were identified despite the random
shapes of their cross sections. From these data, the contacts
were identified, leading to a coordination number (defined
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F IGURE 19 Result of separation of the fibres in an SMC. A
unique colour is randomly attributed to each fibre

F IGURE 20 Illustration of the contact zones found in the
woven fibres, shown in red (fibres are represented in transparency)

as the mean number of fibre–fibre contact per fibre) equal
to 6.57. This value is similar to the ones reported in other
SMCs.38 In Figure 19, it appears that the fibres are well-
separated despite their random cross sections and their
highly anisotropic cross sections.Nevertheless, some fibres
have been broken up by the separation, since they appear
discontinuous. These splits may be due to the low num-
ber of voxels in thickness combined with a large coordina-
tion number.

4.5 Woven plain weave of circular wires

Figure 20 illustrates the application of the present algo-
rithm on the image from the in situ bias test (introduced
in Figure 16D). Efforts were made to keep each fibre con-
nected despite the large number of fibre–fibre contacts,

F IGURE 2 1 Identified fibres after separation of the textile
composed of filament yarns. The circles show locations where the
contacts are not accurately defined

leading to local break-up of the fibres. It appears that the
contacts are well retrieved despite the moderate waviness
of the wires.

4.6 Woven plain weave of dense yarns

Attempts were made to separate the tows from the binary
image of a textile constituted of filament tows (intro-
duced in Figure 16D), as depicted in Figure 21. After sep-
aration, it appears that each yarn is well separated from
each other, despite the woven structure and the large vol-
ume fraction. Nevertheless, some regions appear to be
allocated to wrong fibres near contacts (see circles in
Figure 21). Indeed, because of the filaments, each tow
can be divided into subregions. The difficulty of separat-
ing such a medium is because it can be considered at dif-
ferent scales: the filament or the tow scale. In addition,
because the filaments within each tow are nearly paral-
lel, the proposed algorithm is unable to properly sepa-
rate them. Thus, other techniques based on morphologi-
cal analysis5–7 or skeletonization8,10 may be used in such
a context.

4.7 Performances

The computational time of the methods proposed in this
paper are strongly dependent on themedium. For instance,
the computation time of the chord lengths is linear with
the number of voxel in Ωf , that is, linear time with
the volume fraction and the volume of the CT image.
Since the Least-Misorientation method (detailed in Sec-
tion 2.4.2) requires to consider each fibre at a time, it runs
in linear time with 𝑛f . This algorithm was developed in
Matlab R©, using the Parallel Computing and Image Pro-
cessing toolboxes. Hence, some routines were parallelized
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(e.g. local orientations and recursive dilations) in order
to speed up the process. In addition, the dilation opera-
tions (used in Sections 2.4 and 2.5.3) take advantage of bit
packing,39 making the corresponding algorithms very effi-
cient. Among all media presented in Section 4, the image
of nylon fibres (Figure 17A) lead to the longest computa-
tional time (about 36 h on a 6-core CPU). Finally, it is worth
mentioning that this time could by highly reduced by using
graphics processing unit (GPU) computing.

5 GENERAL CONCLUSION

We proposed a method to identify the solid fibres in vari-
ous fibrous media with volume fraction up to 45%. Starting
from binary 3D images, chord lengths and inertia matri-
ces, as introduced by Altendorf and Jeulin,26 are com-
puted first; then themisorientation angle is used as a crite-
rion for separation. In order to fully reconstruct the fibres
geometries, two dilation algorithms were studied (namely,
isotropic and longitudinal). As a result, this approach relies
on three main parameters: the threshold value on mis-
orientation, the number of considered neighbours for the
computation of the chord lengths, and the dilation opera-
tor to be used. All these parameters were analysed, lead-
ing to optimum values, depending on the properties of the
fibrous network. This approach works well, even on com-
plex media such as:

∙ high volume fraction of fibres,
∙ random cross sections,
∙ wavy fibres.

The efficiency of the proposedmethod for separating the
fibres was evaluated on elementary cases. It was shown
that a minimum radius of 5 vx and a slenderness ratio
larger than 3 is required to ensure the fibre separation
between straight fibres in contact to each other. The error
made on the radii and the fibres orientations was esti-
mated. For woven fibres, no restriction on the fibre radius
was observed.
Since the fibres can be separated, the contact surface

between them can be evaluated. In order to get more
detailed information about the contacts, onemaymesh the
corresponding surface (instead of using the regular grid,
inherited from the voxels), for instance using the march-
ing cube method,40 based on the grey level of CT images.
In this paper, the fibres are either considered as wavy

or perfectly straight. In a further work, the fibres may be
defined piecewise, allowing to investigate the local orien-
tations (such as bending) and local cross sections. This
improvement may be in great interest for the dilation pro-
cedure.
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APPENDIX A: COMPUTATION OF THE CHORD
LENGTHS
In this paper, the method proposed by Altendorf and
Jeulin26 have been used to compute the chord lengths at
voxel 𝑃, denoted 𝑑𝑃 here. Figure A1 schematically illus-
trates how 𝑑𝑗(𝐭

𝑖) and 𝑑𝑗(−𝐭𝑖) are defined.

F IGURE A1 Schematic representation of the method used for
computing of the chord lengths 𝑑𝑗 along a given direction 𝐭𝑖 at a
given location (red square): the white squares illustrate the fibrous
phase nested in the matrix (black squares)

APPENDIX B: INVESTIGATED DIRECTIONS FOR
COMPUTATION OF THE CHORD LENGTHS
According to the definition of the half-chord length d𝑐𝑃(t

𝑖),
given in (1), it is clear that dc𝑃(−𝐭𝑖) = d𝑐𝑃(t

𝑖). This means
that the computation of 𝐈𝑃 based on the N-connected
neighbourhood can be reduced to 𝑛𝑡 = 𝑁∕2 directions. In
addition, because of the way the chord lengths are com-
puted d𝑐𝑃(t

𝑖) (see for instance Figure A1), it appears that:

∀𝑘, dc𝑃

(
𝑘𝐭𝑖

)
= d𝑐𝑃(t

𝑖). (B1)

In other words, if d𝑐𝑃(t𝑖) has already been computed, the
computation of the half-chord length along any direction
parallel to 𝐭𝑖 would be redundant for the evaluation of 𝐈𝑃.
Thus, all sets of computational directions 𝐭𝑖 used for com-
puting the chord lengths, as investigated in Section 3.1, are
presented in Figure B1.

https://doi.org/10.1111/jmi.13096
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F IGURE B1 Illustration of the investigated computational directions of the chord lengths from a given voxel: the reference voxel (where
the chord lengths are computed) is represented in red and its considered neighbours are represented in blue. (A) 𝑛𝑡 = 13, (B) 𝑛𝑡 = 25,
(C) 𝑛𝑡 = 37, (D) 𝑛𝑡 = 49 and (E) 𝑛𝑡 = 61
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