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ABSTRACT.A two-phase approach is proposed to model the rheology of polymer glass-fiber com-
pounds such as SMC or GMT during processing. The anisotropic behavior of the composite,
which is related to the microstructure of the fiber network, is reduced to the simple case of
transverse isotropy. The rheology of the two media, e.g. the matrix and the fiber network, as
well as their interaction follow non-linear viscous behaviors. The equations of this model are
simplified to the case of the compression of SMC, giving the formulation of a shell model whose
equations are written into a finite element code. Simple simulation examples thus show the
strong influence of material and process parameters on the phenomenon of phase separation.

RÉSUMÉ.Un formalisme biphasique est proposé pour modéliser la rhéologie des composites
fibres de verre-matrice polymère de type SMC ou GMT au cours de leur mise en forme. L’ani-
sotropie liée à la morphologie du réseau de fibres est simplifiée au cas de l’orthotropie de
révolution. Le comportement visqueux non linéaire régit la rhéologie des deux milieux consi-
dérés (matrice et réseau de fibres) ainsi que leur interaction. Les équations de ce modèle sont
simplifiées et adaptées au cas du procédé de compression des SMC ; ceci aboutit à la formu-
lation d’un modèle coque, dont les équations sont introduites dans un code éléments finis. Des
exemples simples de simulations permettent alors de souligner l’importance des paramètres «
matériau » et « procédé » sur le phénomène de redistribution de phases.

KEYWORDS:SMC, GMT, theory of mixture, two-phase shell model, segregation.
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1. Introduction

Glass fiber composites processed by compression molding are increasingly used
in the automotive and electrical industries as semi-structural parts because of their
lightweight and their cost-efficient processing. These composites are formed by a
mat of glass fibers or glass fiber bundles, which constitutes the reinforcement of the
matrix. The fibers or bundles content is high so that the composites can be seen as
highly concentrated suspensions. Their matrix may be either thermoplastic or a ther-
moset polymer. Thermoplastic based composites are called GMT for Glass Mat Ther-
moplastics, whereas thermoset based composites are called SMC for Sheet Molding
Compounds. All theses composites are produced as planar preforms before being pro-
cessed by compression molding to produce parts. During this compression stage, the
initial distributions of fiber orientation and fiber content through the produced parts
is not maintained, strongly affecting final geometry and properties of produced parts
(Osswaldet al., 1994; Yaguchiet al., 1995; Thomassonet al., 1996). These two kinds
of phenomena have to be controlled in order to ensure suitable mechanical and geo-
metric properties of the produced parts. Current rheological models entering in the
scope of models for semi-dilute or concentrated suspensions can predict fiber orienta-
tion evolution during processing of polymer composites (Advani, 1994). However, as
they assume that the fiber network and the matrix have the same macroscopic velocity,
these one-phase models cannot account for fiber segregation, keeping a homogeneous
fiber content during the whole compression molding. Therefore, to describe the evo-
lution of the fiber content in SMC or GMT, a two-phase model based on the mixture
theory is proposed in this paper. Firstly, the paper briefly shows how the two-phase
model is established. Secondly, the model is simplified to the case of compression
molding: a formulation for a two-phase "Barone and Caulk" like shell model is pro-
posed. Thirdly, the finite element method for solving the two-phase boundary value
problem is formulated. The paper is concluded by few numerical examples where the
influence of processing parameters on segregation phenomenon is analyzed.

2. Balance equations for a two-phase mixture

The theory of mixture that was initially developed in the pioneering works of
Truesdell and Toupin (Truesdellet al., 1960; Bowen, 1976) is a general framework
well suited to predict fiber segregation phenomena arising during compression mold-
ing. Within such a theoretical framework, the following basic assumptions were
stated:

– the composite is seen as the superposition of two continuous media. Each of
them represents immiscible phase of the material,i.e. the fiber networkf and the ma-
trix m (polymer + filler). Thus, each material pointM of the mixture is simultaneously
occupied by material pointsM (f) andM (m) of the phasesf andm, respectively.

– each elementary macroscopic volume elementδV of the mixture (elementary
massδm and specific massρ = δm

δV ) is simultaneously occupied by the phasesα
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whose elementary macroscopic massδm(α) occupies an elementary macroscopic vol-
umeδV(α) of δV 1. This enables to introduce (i) the macroscopicρ(α) and the micro-
scopicρ(α) specific masses and (ii) the volume fractionf (α) of the phaseα:

δm(α) = δV ρ(α) =
∫

δV(α)

ρ(α)dV and f (α) =
δV(α)

δV
=

ρ(α)

ρ
. [1]

In this work, the constituents of the mixture are assumed incompressible at the micro-
scopic scale so thatρ(α) is constant andρ(α) = f (α)ρ(α).

– the saturation condition for the mixture is stated:

f (m) + f (f) = 1. [2]

– at last, to simplify the analysis, only isothermal situations will be considered in
this paper. Hence, only mass and momentum balances have to be considered in the
modelling (see next subsection).

2.1. Mass and momentum balance equations

Accounting for the previous assumptions the local mass balance equation written
at a given material pointM (α) for each phaseα is

D(α)

Dt
f (α) + f (α)divv(α) = 0, [3]

where the notationD
(α)

Dt is the material time derivative following materials pointsM (α)

of velocityv(α). Summing equations [3] written for each phase of the mixture,i.e. m
andf , and accounting for the saturation of the mixture [2] leads to an incompressibil-
ity equation for the mixture:

div(f (f)v(f) + (1− f (f))v(m)) = 0. [4]

The mixture theory defines the concept of partial stress vectorT (α) and partial
stress tensorσ(α) for each phaseα, writing the total force exerted from the outside on
the surface elementδS of δV as :

δF = δF (m) + δF (f) = (T (m) + T (f))δS = (σ(m) + σ(f)) · nδS, [5]

1. In order to be able to distinguish phenomena arising at a microscopic scale (inside the matrix
or in the fiber in our case) from those "apparently" resulting at a macroscopic scale, a specific
notation for microscopic and macroscopic quantities is introduced: ifφ is a scalar physical
quantity, thenφ(α) (with the subscript(α)) is the microscopic (or local) value ofφ in the phase
α, whereasφ(α) (with the exponent(α)) is the macroscopic (or apparent) value ofφ for the
same phase in the mixture.
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wheren is an outward normal vector toδS. Assuming no external and internal spe-
cific moments, the second momentum balance equations written for each phase lead
to the symmetry of the partial stress tensor,i.e. σ(α) = σT (α). Moreover, rheometry
experiments performed on industrial SMC or GMT clearly reveal that during com-
pression molding these composites can reasonably be approximated as purely viscous
and incompressible anisotropic fluids (Servaiset al., 2002; Le Correet al., 2002; Du-
montet al., 2003). In this case, it can be shown that the partial stress tensorsσ(α) can
be split into the sum of two terms (Bowen, 1976):

σ(α) = −f (α)piδ + σe(α), [6]

wherepi is a pressure related to the incompressibility of the mixture,σe(m) andσe(f)

are "extra" or viscous partial stresses. In this case, neglecting inertial effects and spe-
cific external forces, it can be shown that the local form of the first global momentum
balance equations for the matrix and the network of fibers are (Bowen, 1976):

div σe(m) − (1− f (f))gradpi + p̂e(m) = 0, [7]

div σe(f) − f (f)gradpi − p̂e(m) = 0. [8]

wherep̂e(m) is a viscous momentum exchange between the two phases.

3. Towards a two-phase shell model for compression

3.1. Experimental observations and consequences

The deformation of composites during industrial compression molding is usu-
ally described using two "elementary" mechanisms. The first deformation mode is
a "squeeze flow", characterized by the shearing of the composite in the thickness of
the molded sheets. It is thus assumed that there is a sticking contact between the com-
posite and the upper and lower parts of the mold: such a mechanism has been used to
establish one-phase generalized Hele-Shaw shell models (Hieberet al., 1980; Leeet
al., 1984). The second mechanism is a "plug flow" characterized by an uniform defor-
mation in the thickness of the sheets, with a slipping contact at the interface between
the composite and the mold surfaces: this second type of flow has given rise to one-
phase Barone-Caulk shell models (Baroneet al., 1986; Baroneet al., 1987; Osswald
et al., 1990). In practice, the predominance of the first or second mechanism depends
on processing conditions, thickness of the sheets, length of fibers... In the case of
SMC or GMT, where fibers are much longer than the thickness of the sheets, exper-
imental evidences show that within a wide range of processing conditions, the plug
flow regime leads to a rather good approximation of the real flow patterns (Barone
et al., 1985; Servaiset al., 2002; Odenbergeret al., 2004). Consequently, in order
to simplify the full 3D two-phase model introduced in the previous section, a two-
phase shell model is proposed in this section, adopting a plug flow kinematics for the
composite: it is a direct extension of the one-phase shell model of Barone and Caulk
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(Baroneet al., 1986). Note that for a sake of simplicity, this approach is here restricted
to the case of a plate geometry whose midplane is contained in the(e1, e2) plane: the
extension to a 3D shell model would be straightforward. Hence, the velocityv(α) of
each phase becomes:

v(α) = v
(α)
1 (x1, x2)e1 + v

(α)
2 (x1, x2)e2 +

ḣ

h
x3e3 = ṽ(α) +

ḣ

h
x3e3 [9]

where the symbol "̃" has been introduced to distinguish 2D-unknown fields and 2D-
operators in (e1,e2) from 3D ones, andh is the thickness of the sheets. As the shear
componentsD(α)

β3 (β ∈ {1, 2}) of the strain rate tensor are constrained to zero, arbi-

trary reaction terms must be added to the partial stress tensorσ(α):

σ(α) = −f (α)piδ + T
(α)
β3 (eβ ⊗ e3 + e3 ⊗ eβ) + σe(α), β ∈ {1, 2}. [10]

Hence, the mass balance equation for the fiber network becomes:

D(f)f (f)

Dt
+ f (f)

(
d̃ivṽ(f) + ḣ/h

)
= 0. [11]

Moreover, the incompressibility of the mixture now reads:

d̃iv
(
f (f)ṽ(f) + (1− f (f))ṽ(m)

)
+ ḣ/h = 0. [12]

Finally, the two momentum balance equations in the plane of the sheets are integrated
over the thicknessh of the composite:. In the case of isothermal situations they be-
come:

−(1− f (f)) ˜grad p̄i +
1
h

(
F̃

(m)

h + F̃
(m)

0

)
+ d̃iv σ̃e(p) + ˜̂p

e(m)
= 0̃ [13]

and

−f (f) ˜grad p̄i +
1
h

(
F̃

(f)

h + F̃
(f)

0

)
+ d̃iv σ̃e(f) − ˜̂p

e(m)
= 0̃, [14]

where

p̄i =
1
h

∫ h

0

pidx3 and
(
F̃

(α)

h + F̃
(α)

0

)
· eβ =

[
T

(α)
β3

]h

0
, β ∈ {1, 2}.

F̃
(α)

0 andF̃
(α)

h account for possible friction effects that are generated by the slipping
on the upper(x3 = 0) and lower(x3 = h) surfaces of the mold parts (Baroneet
al., 1986) (cf. next subsection).

3.2. Constitutive equations

– It seems reasonable to consider that the polymer matrix behaves like a power-
law fluid at the microscopic scale, with a power-law exponentn(m) (Le Correet al.,
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2002; Dumontet al., 2003). Following this idea, the extra macroscopic stress tensor
of the matrix is described by a simple constitutive law:

σ̃e(m) = 2µ(m)

(
γ̇

(m)
eq

γ̇0

)n(m)−1

D̃
(m)

, σ
e(m)
33 = 2µ(m)

(
γ̇

(m)
eq

γ̇0

)n(m)−1
ḣ

h
[15]

with µ(m) = (1− f (f))µ0(m), µ0(m) being the viscosity of the polymeric matrix at a
reference shear ratėγ0 of 1 s−1. Accounting for the current kinematical restrictions,

γ̇(m)
eq

2 = 2

(
D̃

(m)
: D̃

(m)
+

(
ḣ/h

)2
)

[16]

– The extra stress tensorσ̃e(f) of the fiber network is a direct extension of the one-
phase mechanical model proposed by Dumontet al. (2003). Hence, the fiber network
is seen as a compressible power-law fluid displaying a transverse isotropy whose axis
is e3:

σ̃e(f) = η(f) 2

1 + 2H

(
De

D0

)n−1

D̃, σ
e(f)
33 = η(f) 2H

1 + 2H

(
De

D0

)n−1
ḣ

h
, [17]

where

D(f)2

e =
2

1 + 2H

(
D̃

(f)
: D̃

(f)
+ H

(
ḣ

h

)2
)

, η(f) = η(f)
ps

(
2

1 + H

1 + 2H

)−n+1
2

[18]

with n(f) the power-law exponent,η(f)
ps a plane strain compression viscosity at a char-

acteristic strain rateD0 of 1 s−1, andH a rheological function that accounts for the
fiber network anisotropy.η(f)

ps andH strongly depend onf (f). For example, using the
experimental results obtained on a standard SMC formulation (Dumontet al., 2003),
possible expressions forη(f)

ps andH are

η(f)
ps = η(f)(98f (f) + 980f (f)2), H =

1 + 98f (f) + 980f (f)2

0.5 + 67f (f) + 670f (f)2
− 1, [19]

whereη(f) is a constant.

– The momentum exchangễp
e(m)

is induced when there is a relative motionṽr =
ṽ(m)−ṽ(f) of the matrix with respect to the fiber network. The expression of this term
is such that the momentum balance for the matrix phase [7] reduces to the permeation
law of a power-law fluid trough a rigid network of fibers or bundles or fibers (in the
latter case, no permeation inside the bundles is assumed), when the matrix does not
deform at the macroscopic scale. A possible momentum exchange is (Auriaultet
al., 2002; Idriset al., 2004):

˜̂p
e(m)

= −(1− f (f))
2n+1µ0(m)

κ∗k∗sq(f (f), n(m))d2

(‖ṽr‖
γ̇0d

)n(m)−1

ṽr, [20]
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whered is the average diameter of the fibers (or bundles),k∗sq(f
(f), n(m)) is the di-

mensionless permeability for transverse flow of a power-law fluid through a regular
square array of parallel fibers of diameterd and fiber volume fractionf (f), and where
κ∗ is a constitutive parameter to determine. According to the experimental data col-
lected for various fibrous media:0.1 < κ∗ < 100 (Jacksonet al., 1986). It can be
shown thatk∗sq(f (f), n(m)) can be directly deduced fromk∗sq(f (f), 1) (Bruschkeet
al., 1993; Idriset al., 2004):

k∗sq(f
(f), n(m)) =

( √
Φ

0.8(1−√Φ)2

)1−n(m)

k∗sq(f
(f), 1), [21]

wheref
(f)
max = π/4, Φ = f (f)/f

(f)
max. In this work,k∗sq(f (f), 1) was approximated by

the analytical lubrication model (Keller, 1964), that gives rather good predictions in a
wide range of fiber volume fraction:

k∗sq(f
(f), 1) =

(1− Φ)2

3
√

Φ
3


3
√

Φ
arctan

(√
1+
√

Φ
1−√Φ

)
√

1− Φ
+

1
2
Φ + 1




−1

. [22]

– In their one-phase shell-model, Barone et Caulk (Baroneet al., 1986) have given
a physical meaning for the forces̃F appearing in [13-14]: they are related to the
presence of a thin amount of viscous matrix entrapped between the compressed sheets
and the mold, that is sheared during the relative motion of the sheets with respect to
the mold. Adopting a similar reasoning for the two-phase model, we propose to write:

F̃
(α)

h = F̃
(α)

0 = −f (α)µ0(m)κ
(α)
H

(
ṽ(α) · ṽ(α)

v2
0

)n(m)−1

2

ṽ(α), [23]

wherev0 is a reference velocity andκ(α)
H are friction parameters to determine.

3.3. Initial and boundary conditions

At the beginning of the compression,i.e. for t = 0, the composite occupies a
surfaceΩ(x1, x2, t = 0) = Ω0 of boundary∂Ω(x1, x2, 0) = ∂Ω0 in the principal
plane(e1, e2) of the mold whose total surface and boundary areΩM (Ω0 ⊂ ΩM )
and∂ΩM , respectively. The initial heighth(x1, x2, 0) = h0 and fiber volume fraction
f (f)(x1, x2, 0) = f

(f)
0 are given, and the initial velocity of each phase is zero.

During the compression,i.e. for t > 0, the local thicknessh(x1, x2, t) is imposed,
so that the composite of surfaceΩ(x1, x2, t) of boundary∂Ω(x1, x2, t) fills the mold
cavity, accounting for the following set of boundary conditions:

– ṽ(α).ñ = 0 on∂vΩ = ∂Ω∩ ∂ΩM , whereñ is the unit outward normal toΩ and
∂vΩ(α) is the part of∂Ω which is in contact with the mold boundary∂ΩM ;
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– σ̃(α).ñ = 0̃ on∂σΩ = ∂Ω− ∂vΩ, where∂σΩ stands for the free surface of the
mixture.

4. FE formulation of the two-phase boundary value problem

4.1. Resolution scheme

The flow of the two-phase mixture is described by an Eulerian approach with re-
spect to a reference surface containing (e1, e2). In the present application, this ref-
erence is the mid-surface of the moldΩM that is meshed using triangular elements,
each of them having a specific heighth. During compression molding, the composite
fills the mold cavity so thatΩ grows fromΩ0 to ΩM and the evolution of the free
surface∂σΩ has to be determined. As in many mold filling applications (Dhattet
al., 1992; Scardovelliet al., 1999; Souliet al., 2001), this was achieved with an ad-
ditional scalar variableχ describing the local volume fraction of the composite in the
mold (i.e. χ = 0/1 if the considered material point is empty/full of composite). The
dynamic of the variableχ(x1, x2, t) is ruled by the following equation:

D(mix)χ

Dt
= 0, [24]

whereD(mix)

Dt stands for the material time derivative following the mixture of velocity

ṽ(mix). As defined in (Bowen, 1976):

ṽ(mix) =
1

f (f)ρ(f) + (1− f (f))ρ(m)

(
ρ(f)f

(f)ṽ(f) + (1− f (f))ρ(m)ṽ
(m)

)
. [25]

Thus, the scalar fieldχ is added to the unknown fieldsf (f), ṽ(m), ṽ(f) andp̄i. All are
dependent of timet and space variablesx1 andx2. An usual strategy is employed to
solve this problem. It consists in splitting the time and the spatial discretizations as in
many usual FE treatments. Thereby, the time interval]0, T ] of molding is subdivided
into a finite number of time steps]tn, tn+1] that can have different lengths2. Given
the solution at timetn, the stepn + 1 consists in (i) finding the new domainΩn+1

occupied by the mixture, and (ii) determining the unknown fieldsv(m)n+1
, v(f)n+1

,
p̄n+1

i , f (f)n+1
andχn+1 in Ωn+1. These two points are detailed below.

(i) The calculation of the new domainΩn+1 from the knowledge ofΩn, v(mix)n

and χn requires (a) the computation of the time increment∆t = ∆tn→n+1 (it is
determined such as the flow front progression is of the order of a typical element
dimension), (b) the determination oftn+1 such astn+1 = tn + ∆t, (c) the calculation
of hn+1 and ḣn+1 for each element of the mesh, and (d) the determination of the
elements that are gained by the mixture betweentn andtn+1.

(ii) The two-phase problem is then subdivided into three sub-problems:

2. In the following, we will find the following notation for every functionf : f(x, tn) = fn(x).
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- Sub-problem [SP1], called the pressure-velocities problem. It aims at finding
v(m)n+1

, v(f)n+1
andp̄n+1

i , and couples the incompressibility equation [12] and the
two momentum balance equations [13-14]. This first sub-problem would be equiv-
alent to the well-known Stokes problem in the case of a one-phase approach with a
Newtonian incompressible fluid.

- Sub-problem [SP2], called the fiber fraction problem. It consists in solving
the mass balance equation [11] to determinef (f)n+1

. Notice that the resolution of SP1
and SP2 is coupled: indeed, attn+1, the pressure-velocities problem SP1 and the fiber
volume fraction evolution problem SP2 are successively solved up to convergence,i.e.

up to finding a fixed point for the velocities̃v(m)n+1
andṽ(f)n+1

, pressurēpn+1
i and

fiber volume fraction fieldsf (f)n+1
.

- Sub-problem [SP3], called the free surface problem. It consists in solving the
transport equation [24] onΩn+1 to computeχn+1.

In what follows, the different numerical methods used to solve these problems are
presented.

4.2. FE formulation of the two-phase pressure-velocities problem

4.2.1. Weak formulation

The pressure-velocities problem [SP1] is re-casted into a weak form by multi-
plying the equations [13-14] and [12] by a set of test functionsṽ(m)∗, ṽ(f)∗ and
p̄∗ (belonging to appropriate spacesV

(m)
0 , V

(f)
0 andQ) and by integrating overΩ

applying the divergence theorem. The problem consists now in finding the set of un-
knowns functions(ṽ(m), ṽ(f), p̄i) ∈ (V (m)×V (f)×Q) such as∀(ṽ(m)∗, ṽ(f)∗, p̄∗) ∈
(V (m) × V (f) ×Q):





∫

Ω

σ̃e(m) : D̃
(m)∗

d Ω−
∫

Ω

1

h
(F̃

(m)

h + F̃
(m)

0 ).ṽ(m)∗d Ω−
∫

Ω

˜̂p
e(m)

.ṽ(m)∗d Ω− . . .

∫

Ω

d̃iv
[
(1− f (f))ṽ(m)∗

]
p̄id Ω =

∫

(∂vΩ)

ṽ(m)∗.σ̃e(m).ñ d (∂vΩ),

∫

Ω

σ̃e(f) : D̃
(f)∗

d Ω−
∫

Ω

1

h
(F̃

(f)

h + F̃
(f)

0 ).ṽ(f)∗d Ω +

∫

Ω

˜̂p
e(m)

.ṽ(f)∗d Ω− . . .

∫

Ω

d̃iv
[
f (f)ṽ(f)∗

]
p̄id Ω =

∫

(∂vΩ)

ṽ(f)∗.σ̃e(f).ñ d (∂vΩ),

∫

Ω

d̃iv
[
f (f)ṽ(f)

]
p̄∗d Ω +

∫

Ω

d̃iv
[
(1− f (f))ṽ(m)

]
p̄∗d Ω = −

∫

Ω

ḣ

h
p̄∗d Ω,

[26]
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It is important to underline that this system is highly non-linear due to the power-laws

used to determinẽσe(α), ˜̂p
e(m)

andF̃
(α)

h + F̃
(α)

0 (see subsection 3.2).

4.2.2. FE approximations

A mixed finite element method is used to discretize the previous weak formula-
tion. The considered elements areP2+ for the two velocity fields andP1 for the
in-thickness integrated pressure. The interpolation of the velocity fields is quadratic
(six degrees of freedom plus an internal velocity node) whereas the interpolation of
the pressure is piecewise linear. The use of these elements allows to circumvent the
Brezzi-Babuška compatibility condition. The following matrix formulation of the
pressure-velocities problem can be readily obtained via the standard Galerkin dis-
cretization process:

(
A(Ṽ) tB

B 0

)(
Ṽ
P

)
=

(
F(Ṽ)

G

)
[27]

whereṼ is the vector of nodal velocities unknowns (m andf ), i.e.

Ṽ =




Ṽ(m)

Ṽ(f)


 , [28]

P stands for the vector of integrated pressure nodal unknowns,F is a vector that
accounts for the boundary conditions and whereG contains terms arising from the
incompressibility constraint associated toḣ/h. More precisely, one can write :
(

A(Ṽ) tB
B 0

)
= . . .




A1
(m) + A2

(m) + A3
(f/m) −A3

(f/m) tB(m)

−A3
(f/m) A1

(f) + A2
(f) + A3

(f/m) tB(f)

B(m) B(f) 0




[29]

where the matricesA1
(α), A2

(α) andA3
(f/m) are "viscous" matrices arising re-

spectively from the rheology of the phases, the friction terms, and the momentum
exchange, and whereB(α) stands for the incompressibility condition. In the case of
a linear system (n(α) = 1), the problem can be solved by applying the Uzawa algo-
rithm for decoupling the momentum equations and the incompressibility constraint.
To reduce the number of iterations up to convergence, the Uzawa algorithm was mod-
ified by solving the saddle-point problem for the augmented Lagrangian function of
the system [27] defined as

Lr(Ũ,Q) =
1
2

tŨAŨ+
1
2
rt(BŨ−G)(BŨ−G)− tŨF+ t(BŨ−G)Q, [30]
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wherer is a constant (Robichaudet al., 1990; Liuet al., 2001). Notice that the problem
[30] can be generally written into a linear system of equations:

(
A + rtBB tB

B 0

)(
Ṽ
P

)
=

(
F + rtBG

G

)
. [31]

If the problem isnon-linear, a Newton-Raphson method is used. To find the
solution of this linearized system, we apply the modified Uzawa algorithm used
to solve the linear problems. The general algorithm for the non-linear pressure-
velocities problem combines the Newton-Raphson and Uzawa algorithms. Given
r, nrmax, εNR, ρ, kmax, εUZ , an arbitrary choice ofPnr=1 for P and Ṽnr=1 for
Ṽ:

Begin Newton-Raphson
repeat

Compute∆Pnr , ∆Vnr :
∆Pk=1

nr ←− 0
Begin Uzawa
repeat

Compute∆Ṽk
nr by solving the following equation:

(
∂A(Ṽnr)

∂Ṽ
+ A(Ṽnr) + rtBB− ∂F(Ṽnr)

∂Ṽ
)∆Ṽk

nr

=
−(A(Ṽnr) + rtBB)Ṽnr − tBPnr + F(Ṽnr) + rtBG− tB∆Pk−1

nr

Then compute∆Pk
nr:

∆Pk
nr ←− ∆Pk−1

nr + ρ(B(Ṽnr + ∆Ṽk
nr)−G)

k ←− k + 1
until (‖B(Ṽnr + ∆Ṽk

nr)−G‖ ≤ εUZ or k = kmax)
End Uzawa
Ṽnr+1 ←− Ṽnr + ∆Ṽk

nr

Pnr+1 ←− Pnr + ∆Pk
nr

nr ←− nr + 1
until (‖R(Ṽnr, Pnr)‖ ≤ εNR or nr = nrmax)
End Newton-Raphson
Ṽn+1 ←− Ṽnr

Pn+1 ←− Pnr

wherenrmax, εNR are respectively the maximum number of iterations and the con-
vergence criterion, wherekmax andεUZ are respectively the maximum number of it-
erations and the convergence criterion of the Uzawa algorithm, and where0 < ρ < 2r
is the Uzawa parameter. In practice, the components of the matrices and vectors of
the previous system are computed using a standard Gaussian quadrature integration
method (Dhattet al., 1981; Zienkiewiczet al., 2000). The solver of the matrix sys-
tem given by combining the Newton-Raphson and Uzawa algorithms is based on a
biconjugate gradient algorithm.



896 REEF – 14/2005. Composite forming simulations

4.3. Mass balance equation for the fiber phase and free surface transport

– The solution of the fiber volume fraction evolution equation [11] is obtained
through a finite element discretization in space and a characteristic based method dis-
cretization in time. The variational formulation of the equation [11] reads∀φ∗ ∈ X:

∫

Ω

D(f)f (f)n+1

Dt
φ∗ dΩ +

∫

Ω

(
d̃ivṽ(f)n+1

+
ḣ

h

)
f (f)n+1

φ∗ dΩ = 0, [32]

wheref (f)n+1 is the solution of the fiber volume fraction field at timetn+1 andφ∗ a
test function defined in an appropriate spaceX. From [32], the characteristic method
is applied to approximate the material derivativeD(f)

Dt f (f)n+1
. It consists in writing

the following finite difference scheme:





D(f)f (f)n+1

Dt
=

f (f)n+1
(x̃)− f (f)n

(X̃
n
)

∆t
with

X̃
n

= x̃n+1 −∆tṽ(f)n+1
,

[33]

where it is important to notice that̃X
n

is the first-order approximation of the position
of the particle at the timetn, ∆t = tn+1 − tn. Finding this position, which is called
the departure point (or the "foot") of the characteristic line, is the main difficulty of
the method. In the current application, an intersection method (Fourestey, 2002) is
employed to find this position. Notice that other approximation schemes based on
higher orders characteristic methods could be used (Magnin, 1994; Fourestey, 2002;
Kaazempur-Mofradet al., 2003). The variational formulation finally becomes∀φ∗ ∈
X:

∫

Ω

[
1 + ∆t

(
d̃ivṽ(f)n+1

+
ḣ

h

)]
f (f)n+1

(x̃)φ∗ dΩ =
∫

Ω

f (f)n

(X̃
n
)φ∗ dΩ.

[34]

A standard Galerkin finite element scheme yields to a matrix global formulation,
which writes as

(
M(f)

)
(F (f)n+1

) =
(
Ψ(f)

)
, [35]

whereF (f)n+1
is the vector of nodal unknowns,M the mass matrix built on the left-

hand side integral of [34], andΨ(f) a vector based on the right-hand side integral
of [34]. In this characteristic finite element formulation, quadratic P2 elements are
used. In practice the elements of these matrixM and vectorΨ(f) are approximated
using Gaussian quadrature. More precisely, to computeΨ(f), the Gaussian quadrature
points of the elements have to be backtracked: the background elements that contain
the departure points of theses quadrature points have to be located. Then the scalar
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Boundary conditions
- Boundaries 1, 2, 3 : slipping at the wall, and
- Boundary 4 : flow front,  and 
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Figure 1. Reference geometries and boundary conditions used for the simulation ex-
amples 1 (a) and 2 (b)

valuesf (f)n

(X̃
n
) at these departure points can be determined by interpolation from

the nodal values of the background elements at timetn. Once the system is built, it is
solved using a conjugate gradient method.

– A numerical scheme which is identical to the previous one has been used to
computeχn+1. Therefore, introducingϕ∗ a test function defined in a appropriate
spaceY , the variational formulation of equation [24] is :

∫

Ω

χn+1ϕ∗ dΩ =
∫

Ω

χn(X̃
n
)ϕ∗ dΩ, ∀ϕ∗ ∈ Y. [36]

The characteristic Galerkin method yields the following matrix form of this problem:
(
M(χ)

) (
χn+1

)
=

(
Ψ(χ)

)
, [37]

with χn+1 the vector of nodal unknowns,M(χ) a mass matrix built on the left-hand
side of integral [36] andΨ(χ) a vector built on the right-hand side of [36]. Simple
linear P1 elements are used in this discretization scheme. Here, the mixture velocity
ṽ(mix) is used to determine the departure pointX̃

n
of the characteristic lines.

5. Numerical examples

The solver is implemented in Fortran 95 programming language and uses some
routines from the SLATEC mathematical library written in Fortran 77. This program
runs either on Windows or Unix systems. The meshes are computed following the
standard ".unv" norm available in ProEngineer or I-DEAS softwares. The meshes as
well as the input data are transmitted to the solver through a F95 interface. Results
are post-treated in Matlab interface. To illustrate the influence of material and process
parameters on the segregation phenomenon, we have considered two different numer-
ical tests described below. In the first example, the different phenomena arising at the
beginning of a compression molding are analyzed, so that only the pressure-velocities
sub-problem [SP1] is considered. The simulation consists in submitting a rectangular
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Figure 2. Influence of the strain rateD33 on the fiber segregation rateDseg for vari-
ous pairsn(p) andn(f), L = 100 mm
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Figure 3. Influence of the permeability parameterκ∗ (a) and the fiber volume fraction
f (f) (b) on the segregation rateDseg

sample of composite of dimensionsL × l × h = 100 × 10 × 10 mm3 in dimension
to a plane strain compression deformation (D

(α)
22 = 0) at a constant axial strain rate

D
(α)
33 = D33 = ḣ/h. The sample has a uniform fiber volume fractionf

(f)
0 .

A reference test is defined with the following parameters: fiber volume fraction
f

(f)
0 = 0.2, fiber diameterd = 0.6 mm, viscositiesµ0(m) = 0.055 MPa s and

η
(f)
ps = 0.18 MPa s, power-law exponentsn(m) = 0.58 andn(f) = 0.44 (Dumont

et al., 2003), permeability coefficientκ∗ = 10, friction coefficientsκ(α)
H = 0, and

axial compression strain rateD33 = −0.1 s−1. Figure 1a displays the geometry, the
boundary conditions and the mesh used to perform the simulations. The various tests
that are carried out in the following are all based on this set of reference parameters
and will aim at revealing the influence of each parameter one by one. At last, in or-
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der to characterize the fiber segregation phenomenon, a local segregation rateDseg is
defined such as

Dseg =
divv(f)

D33
= −

(
1

D33f (f)

)
D(f)f (f)

Dt
, [38]

so that the higherDseg, the higher the segregation phenomenon. On the contrary, an
one-phase behavior of the composite is observed whenDseg = 0.

Figure 2 shows the influence of the axial compression strain rateD33 on the fiber
segregation rateDseg along the dimensionless X-coordinatex1/L of the sample for
various pairsn(m) andn(f). It can be observed that the "contrast" between the rhe-
ology of the two phases plays a key role in the segregation phenomenon. In the case
wheren(m) 6= n(f), figures 2a and 2b depict that the segregation increases as the
axial compression strain rate decreases. This means that a large amount of matrix is
expelled from the fiber network. Conversely, for high strain rates, the mixture behaves
merely like an one-phase medium. The comparison of figures 2a with 2b underlines
the strong influence of∆n = n(m) − n(f): the segregation is high when the differ-
ence∆n is large. If∆n = 0, there is no influence of the axial strain rate (figures
2c). Figure 3a shows the strong influence of the parameterκ∗ on the segregation rate
Dseg. This latter parameter depends on the geometry of the microstructure of the fiber
network. Low values ofκ∗ are related to a low interaction between the two phases
of the mixture and to a two-phase behavior of the composite. On the contrary, for
high values of this parameter, the composite behaves merely as an one-phase medium:
the permeation of the polymer matrix through the fiber network is hindered. Figure
3b shows that fiber volume fractionf (f)

0 also affectsDseg. With the current set of
constitutive equations, more pronounced segregation phenomenon is observed when
the fiber volume fractionf (f) is high. Such an influence results from the competition
between the reinforcement of the fiber network and the increase of the interaction term
asf (f) is increased: such result could not be easily intuited without a FEM simulation.

The second example consists in showing the evolution of segregation during the
filling of a channel. Thus, the whole two-phase problem [SP 1-2-3] is solved. The
sample isL0× l×h = 170×50×10 mm3 in dimension and is located on the side of
the rectangular mold, whose dimensions in(e1, e2) areLM×l (LM = 500 mm). The
mesh and the boundary conditions are given in figure 1b. The reference parameters
are the same than those from the previous example exceptn(f) = n(m) = 1. Figure
4 shows the evolution of the fiber volume fractionf (f) along thex1 coordinate of
the mold for three different time steps corresponding to three different positions of
the front of the mixture, respectively 200, 300 et 450 mm. Two compression molding
simulations have been carried out using two values ofµ0(m): the reference one,i.e.
µ0(m) = 55000 Pa s that corresponds to the viscosity of SMC matrixes (figures 4a-4c),
andµ0(m) = 550 Pa s, corresponding to a very small viscosity of the matrix (figures
4d-4f). The figure brings up the following comments:

– At a given time, the evolution of the fiber volume fraction has a wavy form that
increases as the compression is pursued: at the core of the sample the fiber volume
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fraction f (f) is higher than its initial valuef (f)
0 (fiber segregation), increases asx1

increases up to a maximum valuef
(f)
max, and finally decreases to values lower than

f
(f)
0 near the flow front (matrix segregation).

– Fiber and matrix segregation phenomena are more pronounced when the contrast
between the matrix viscosity and the fibre network is higher: forµ0(m) = 550 Pa s, an
important segregation phenomenon is observed, whereas it is much lower forµ0(m) =
55000 Pa s, for which the composite behaves almost as an one-phase medium.
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Figure 4. Fiber volume fraction profiles during the channel compression tests at var-
ious filling times and for two values of the matrix viscosities:µ0(m) = 55000 Pa s
(a-c) andµ0(m) = 550 Pa s (d-f)

6. Conclusion

A two-phase model based on the mixture theory has been proposed to simulate the
segregation phenomenon arising during the compression molding of composites such
as SMC or GMT. These composites are seen as being formed by two interacting vis-
cous porous continuous media: the polymer matrix phase and the fiber network phase.
This model has been simplified to the case of a two-phase shell model, assuming a
plug flow for the two-phases of the composite. The model is restricted to isothermal
situations and has been implemented in a finite element software. A 2D character-
istic/FEM scheme with a moving free surface was developed. Numerical examples
given in the present work first illustrate the influence of parameters such as the axial
compression strain rateD33, the difference∆n = n(m)−n(f), the initial fiber volume
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fractionf (f) and the permeation coefficientκ∗ on the fiber segregation phenomenon
at the beginning of a compression stage. They also illustrate the complex fiber vol-
ume fractionf (f) profiles that can be expected during the compression molding of a
composite in a simple channel. Future efforts will focus on the comparison between
the predictions of the two-phase model and results of experiments performed either on
SMC or GMT compounds.
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