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Abstract
The understanding of the mechanical behavior of quasi-parallel fibers network is an impor-
tant issue for the development of the manufacturing processes of fibers reinforced com-
posite materials. This study presents a numerical model of quasi-parallel fiber networks, 
which consists of a realistic representation of the fiber network geometry, and a reliable 
simulation strategy to reproduce the main phenomena at the fiber scale. To obtain feedback 
on this approach, experimental compaction was performed on a bundle of polyester fibers. 
The experiment was combined with X-ray tomography scans of the specimen to extract the 
initial state and use it to create a CAD model, implemented in finite element simulations. 
Each fiber is modeled by 3D linear beam elements, and the contact law between the fib-
ers is based on the Hertz contact model taking fiber friction into account. The comparison 
between numerical and experimental show good coherence, demonstrating the potential of 
the strategy.

Keywords Fibers · Finite Element Analysis (FEA) · Mechanical testing · X-ray 
tomography

1 Introduction

The improvement of fibrous reinforced composite manufacturing processes is required 
in terms of cost, quality, and productivity rate. For instance, RTM (Resin Transfer Mold-
ing) is a closed-molding fabrication process that allows for automatic, high-quality and 
cost-effective production. The first step in the RTM process consists in preforming a dry 
fibrous textile before injecting the resin. Depending on the desired shape of the final part, 
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the fibrous textile undergoes different mechanical loads, which induce strains and dam-
age to the fabric. As a result, the mechanical properties of the final parts are drastically 
impacted. It is therefore essential to predict the preforming process of composite parts and 
optimize the fabrication parameters. Two main approaches are possible to achieve this task: 
an experimental or a numerical approach. However, proceeding with experimental tests 
until the optimum parameters are found is long and expensive compared with an approach 
based on numerical simulations. In order to simulate the preforming process, it is neces-
sary to establish an appropriate mechanical behavior of the fibrous textile. This behavior is 
mainly a structural effect that depends essentially on the yarn interlacing and secondly on 
yarn behavior. Each yarn is composed of thousands of fibers, each of which can be consid-
ered a homogeneous material. Therefore, the reinforcement’s behavior depends on both the 
behavior of the fibers and their interactions inside the yarn. Consequently, the fiber scale 
can be considered the finest one to understand and model the reinforcement behavior. This 
task would be quickly and simply achievable by establishing a reliable numerical model 
at the fiber scale to model the fibers’ behavior and their interactions. Technical yarns with 
adjacent, quasi-parallel fibers are mostly used in the manufacturing of fibrous reinforce-
ment composite materials. The main objective of the present paper is to develop a thorough 
numerical methodology to simulate the deformation of these types of fiber networks as 
they undergo different loading paths during the preforming step. This approach will pro-
vide an extensive database for establishing yarn behavior at the mesoscopic scale, and then 
the fabric behavior at the macroscopic scale. The focus of this study is on the compaction 
load path, as it is the most representative complicated load path leading to fiber rearrange-
ment, while others, such as tension lead to fiber deformation.

The mechanics of fibrous networks has been investigated in many experimental studies, 
for instance [1] discusses the character of the structure, [2] studies the compression with a 
maximum load of 100N, and [3] with a maximum compression load of 600N. They con-
cluded that the mesoscopic response of fiber assemblies is non-linear and non-reversible 
due to fiber deformations, frictional sliding and irreversible rearrangement within the fiber 
assembly. These experimental studies have been confirmed by X-ray tomography, which 
has also been used to characterize compaction, taking advantage of the local 3D represen-
tation of the fiber assembly [4, 5]. Experimental studies have been crucial to explore differ-
ent approaches to the behavior of fibrous media, for instance [6, 7].

From a numerical perspective, the compaction of fiber networks has been studied by 
two main approaches: rigid element simulations based on molecular dynamics and finite 
element simulations. Rodney et  al. [8] used the first approach to model the compaction 
of quasi-parallel fibers; potential energy was used to model the fiber behavior. It took 
into account traction, bending stiffness, and the contact interactions between fibers. The 
non-penetration condition was included, but the friction coefficient was neglected. Based 
on this model, Rodney et  al. were able to predict both the number of contacts per fiber, 
corresponding to the packing density and the energy per fiber as a function of the rela-
tive density. In a subsequent study, friction interactions were added to the model [9], and 
showed that friction shifts the densities to lower values. Subramanian and Picu [10] also 
used models based on molecular dynamics. Unlike the previous model in which the contact 
energy was defined by a Hertz potential, Subramanian and Picu defined the contact energy 
as a repulsion potential. They concluded that inter-penetration and sliding at contact points 
are the prevailing phenomena during the final steps of compaction. In addition, they both 
decrease as the friction coefficient increases.

The following other studies modeled fibers by using different types of bar and beam 
elements. In [11], a fiber network model was developed with arbitrary initial orientation, 
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fibers were modeled by beam elements with constant curvature, and the interactions at the 
contact points were provided by springs. The results showed a good agreement with the 
experimental tests. However, the fiber volume fraction was limited to 3% and the numerical 
model was limited to geometrically linear deformations. A recent study proposed a model 
of uniaxial compaction of quasi-parallel fiber networks [12]. The fiber assembly was repre-
sented by a periodic unit cell in which each fiber was modeled by straight beam elements. 
This model was used to investigate the effect of simulation parameters, such as contact 
damping, material damping, and friction coefficient on the accuracy and robustness of cal-
culations. Both the packing stress (i.e. the component of the stress tensor along the com-
paction direction) and the number of contacts corresponding to a friction coefficient of 
µ = 1 were compared to those of van Wyk’s [13] and Toll’s [14] studies because they are 
based on the no sliding assumption. However, the results obtained for a meaningful fric-
tion coefficient were not compared to experimental data. Durville [15, 16] also obtained 
results in accordance with those of van Wyk using the Cosserat beam theory. His model 
was enhanced by a penalty law to manage fiber penetrations at the contact zones. For fric-
tion, the Coulomb law was adopted. He also estimated the number of fiber contacts Nc 
with respect to the fiber volume fraction vf :Nc ∝ vf

2∕3.
Mathematical-computational approaches have also been used to study the compaction of  

fiber networks, Beil and Roberts developed a fiber assembly model [17–19], and used it 
to simulate uniaxial compaction. The model contained fifty helix-shaped fibers randomly 
implemented in a unit cell. The fiber behavior was modeled by the Bernoulli–Euler theory of 
elastic rods. In addition, both repulsion and frictional forces were used to model interactions 
at fiber contact points. The model made it possible to investigate, for instance, the evolution 
of the pressure on the fiber assembly as it undergoes a loading–unloading cycle, the num-
ber of contacts between the fibers, the interaction forces at the contact points, and the fiber 
crimp effect. However, the previous fiber network compaction features were obtained at a  
low fiber volume fraction range 

(
�0 = 0.8%

)
 [17].

To summarize, the numerical studies cited above investigated some of the important 
microstructural parameters, such as packing density, fiber contacts, fiber penetration, initial 
orientation, fiber curvature, and friction coefficient, that are useful to extend our under-
standing of the mechanical behavior of fibrous media. However, these studies were not 
compared with experimental data, which is crucial to validate the numerical results. For 
this reason, recent studies have attempted to take the lead in the numerical/experimental 
dialogue and compare their numerical results with experimental data. Daelemans et  al.  
[20] describe a solution that enables predictive compressive simulations through hybrid 
virtual fibers. The authors simulated the compression of twill fabric layers with hybrid vir-
tual fibers having bending stiffness based on the virtual fibers developed by the Dynamic 
Fabric Mechanical Analyzer (DFMA). The effect of the number of virtual fibers and the 
length-to-diameter ratio on the simulation results is discussed. However, most of these 
studies do not investigate in depth the mechanical behavior of yarns with quasi-parallel 
fibers. In fact, very few numerical studies have been carried out on unidirectional fibrous 
media [21–25]. Moreover, they did not attempt to model the yarn behavior. Furthermore, 
in [25], the friction coefficient between fibers was just identified to fit the experimental 
results. In addition, this study differs from [26–28], by the use of different numerical strate-
gies. In these studies, the authors made the choice to use digital elements: bar elements 
linked by rigid knots. Whereas, in the present work, the choice was fixed on beam ele-
ments, on the one hand, because their potential was highlighted by other previous stud-
ies. On the other hand, the linear beam elements (B31) allow handling well the problems 
of a large number of contacts by using the general contact algorithm on Abaqus/Explicit. 
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In addition, the experiment/simulation comparisons of the compaction curves encourage 
their use. Considering the following steps of the predefined approach, a significant gain is 
expected from the beam elements, especially in terms of computation time.

The objective of the present study is to fill this gap in the literature and offer a quasi-
parallel fiber network model with a reliable simulation strategy. This model is intended 
to simulate, comprehend and model the mechanical behavior of fiber yarns. The model is 
validated by theoretical and numerical test cases, and most importantly, it is compared with 
experimental results. The comparison is even more meaningful as the geometry model of 
the fiber assembly is representative of the real microstructure geometry, which is not the 
case for previous studies. Such a numerical model requires: (i) a realistic representation 
of the fiber network geometry and (ii) a reliable simulation strategy to model the main 
phenomena at the fiber scale. To feed this approach, compaction tests were conducted on 
fiber network specimens. The experiments were combined with X-ray tomography image 
analysis in order to: (i) extract the initial microstructure of the fibrous specimen before 
starting the compaction test; (ii) monitor the intermediate microstructure evolution at dif-
ferent stages of the experiment.

The originality of this work is characterized and modeled the behavior of a fibrous 
medium at the micro-scale. In addition, the proposal of a dialogue between an experimen-
tal approach and a numerical one throughout the development and validation process of the 
simulation strategy. The numerical tests were performed on the same initial microstruc-
tures of the fibrous samples thanks to the use of X-ray tomography. This enhances the cred-
ibility of the validation process. This microstructure representation was enriched by data 
collected during compaction (load, displacement, and X-ray images of the specimen).

2  Experimental and Numerical Tools

2.1  Experimental Tools

A non-saturated specimen of polyester fibers ( E ≈ 15GPa ) was prepared for the compac-
tion test. The fibers were initially curved because they were wound on a cylindrical spool. 
The specimen consists of 40 fibers. The number of fibers was purposely limited because it 
is easier to characterize a fiber network behavior with fewer fibers rather than with numer-
ous fibers. In addition, since establishing and validating a simulation strategy requires run-
ning a large number of simulations, a limited number of fibers is more beneficial to obtain 
practical CPU times. Each fiber has a diameter of ∅ = 0.5mm and a length of l = 15mm , 
the 3D maps of the real specimen as shown obtained by FIJI software in the Fig. 1(a).

The specimen was subjected to a uniaxial confined compaction test, i.e. the lateral 
surfaces are not stress-free. For this purpose, the fibers were placed on a rectangu-
lar plate (width = 3 mm, length = 6 mm as presented in Fig.  2(a)) which is fixed on a 
micro-press designed in the 3SR laboratory in Grenoble [5]. The micro press consists 
of two plates: (i) the rectangular one, which contains the fibers, and is connected to 
a micro-motor; the compaction is controlled by a displacement U; (ii) the upper plate 
is connected to a load cell (capacity = 50N ) in order to record the compaction load F. 
The micro-press was placed on a micro-tomograph in order to scan the specimen at 
different compaction steps. 3D X-ray microtomography images, with the pixel size of 
r = 15�m3∕voxel , tube tension of 100KV  and tube intensity of 100�A , were thus obtained 
and were post-processed to reconstruct the specimen microstructure. The reconstructed 
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3D maps were used to obtain the skeleton of the specimen microstructure by uniformly 
reducing the fiber radius, in which each fiber is represented by its mid-line (Fig. 1(b)). 
They can therefore be modelled by 3D beam elements. Before starting compaction, 
the specimen was carefully placed in contact with the upper plate without changing 
the position of the fibers, and then it was scanned to obtain the initial microstructure. 
The specimen was compacted afterward. As the test progresses, the load cell records 
the compaction load. The compaction was interrupted whenever a significant change 
in the fiber positions was observed, so the relationship between loading force and time 
is stepwise. The total compaction experiment time is 30519.159 s (508.65 min), which 
includes the upward movement time of the mandibular plate and the scanning time of 
the X-ray Tomograph. These interruptions are useful for two reasons: (i) measuring 
the plate displacement U and the corresponding load compaction F during the differ-
ent stops in order to deduce the mechanical response of the fiber assembly as displayed 
in Fig. 2(b); (ii) rescanning the specimen’s microstructure and to obtain later the fiber 
positions at different steps, the curve of compression loading force with time is shown 
in Fig. 2(c). The compaction test above and its corresponding image analysis constitute 
the database that was then used to validate the numerical model via an experimental/
numerical comparison.

Fig. 1  (a) 3D X-ray tomography image of the fiber network specimen in its initial state. (b) The geometry 
model of the fiber network specimen consists of the fiber mid-lines

Fig. 2  The uniaxial confined compaction test



 Applied Composite Materials

1 3

2.2  Numerical Tools

The present section introduces the methodology followed to define the simulation strategy 
regarding the computation convergence, reliability and efficiency. The simulations were 
performed on Abaqus/ Explicit because it is more suitable for this type of study in terms 
of convergence, contact algorithms and total CPU time. All the simulations in the present 
paper were executed using an Intel® Xeon® machine (CPU E5-1650 v3, 3.5 GHz).

3  Numerical Procedure

Two main categories of elements are potentially usable: deformable finite elements and 
rigid discrete elements. As the fibers are initially curved, fiber deformation, especially 
bending, is one of the contributing factors to the fiber network compaction behavior. For 
this reason, finite elements appear to be an adequate choice. While the present study used 
40 fibers for validation purposes, the approach adopted in this study is defined in two 
steps: the first one consists in defining a simulation strategy that will allow reproducing 
in an efficient and reliable way of the physical phenomena occurring during compaction. 
The validation of this simulation strategy will allow its use in the second step which con-
sists in setting up a model of a hundred fibers to understand and model the law of behav-
ior of entanglement of quasi-parallel fibers. During the first step presented in this paper, 
experimental and numerical tests were performed to define the parameters of the simula-
tion strategy, they were then validated by an experiment/simulation dialogue. The process 
of definition and validation of these parameters requires several numerical tests and data 
post-processing whose execution time depends on the number of fibers, hence the use of 
a limited number of fibers. This will allow performing the necessary and enough tests to 
identify the parameters of the simulation strategy while reducing the computation and post-
processing times. On the other hand, this approach allowed to validate the ability of the 
simulation strategy to faithfully reproduce the physics of compaction on a limited number 
of fibers. It is easier to increase the number of fibers later to work on a model representa-
tive of real cases.

3.1  Finite Elements

Thus, each fiber was modeled by 3D beam elements, as these types of elements are geo-
metrically simple (one-dimensional line) and contain a small number of integration points 
(three at most for the cubic beam elements). In the process of mechanical analysis, it is gen-
erally divided into Timoshenko beams and Euler beams. Timoshenko beams (B21, B22, 
B31, etc.) consider bending deformation as the main deformation and shear deformation 
as the secondary deformation, which are flexible beams and more suitable for slender com-
ponents. Therefore, it is more suitable for simulating fiber assemblies. Linear interpolation 
beam elements (i.e. B31 elements) are more suitable for simulations involving contacts 
[29], which is the case for fibrous media. They were therefore used in the present study. As 
mentioned earlier, fiber bending is as important as contacts, especially for initially curved 
fibers. Therefore, each fiber must be sufficiently meshed to avoid any misrepresentation of 
the fiber’s deflected shape.
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3.2  The Contact Behavior of Beam Elements

Concerning the real fibers of the compacted specimen, increasing the contact forces can 
generate a local strain as illustrated in Fig. 3(b), especially in the static phase. In the quasi-
parallel fibers network, the main contact between the two fibers is oblique. Therefore, the 
resulting contact is localized. In addition, during compaction, the rearrangement of fib-
ers is mainly observed and the contact force between fibers does not reach local deforma-
tion, so the local deformation is negligible. In this case, the contact stiffness depends on 
the deformability of the fiber cross section. However, as beam elements are based on the 
assumption of a rigid cross-section, the beam cross sections penetrate each other, generat-
ing a penetration depth, denoted δ, instead of a local strain (cf. Figure 3(a)). For this rea-
son, the aim of the present part is to provide a contact stiffness for beam elements that is 
sufficiently close to the contact stiffness obtained by deformable sections. Since the cross-
section of beam elements is rigid, the local deformation was omitted, considering only the 
penetration between fibers in contact with each other. Then, the relationship between the 
penetration depth δ and the contact force is controlled through a Hertz contact model.

From a numerical perspective, Abaqus provides contact force-penetration relationships 
to define a contact model. Since the Hertz contact curve can be fitted by a power function, 
the suitable contact relationship would be a linear interpolation (n segments, i ϵ [1, n])  
of a power function between the contact force and the penetration depth as presented in 
Fig. 4 [29]. d is interpolation step, �i and Ki respectively the current penetration and the 
current stiffness at the segment i and Kdeff  the default contact stiffness. Each time the cur-
rent penetration �i exceeds a multiple of the penetration measure d (i.e.�i ≥ id ), the contact 
stiffness Ki is scaled by a factorS . The initial stiffness is set equal to the default contact 
stiffness Kdeff  multiplied by a factorS0 . Consequently, for each current penetration �i in the 
segment[(i − 1)d, id , the stiffness Ki is expressed by Eq. 1. The simulation contact model is 
then identified using the parameters S , S0 and d [29].

The specimen used in the present study is a quasi-parallel fiber network. Therefore, two 
types of fiber contact configurations could potentially be formed: (i) Parallel fiber contact 

(1)Ki = S0Kdef S
(i−1) (i = 1, 2, 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅n)

(a) RRigidd crross-secc�on (b)DDefoformmablle crrosss-seec�oon

Fig. 3  Contact behavior depending on the deformability of the cross-section
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where the contact area is rectangular (cf. Figure 5(a)); (ii) Oblique fiber contact with a rela-
tive fiber orientation Φ(cf. Figure 5(b)) and an elliptic contact area. For the second case, the 
contact force-penetration relationship depends necessarily on the relative fiber orientation 
Φ , which changes eventually for every two fibers in contact as the compaction progresses. 
However, the contact formulation provided by Abaqus does not consider this change in 
orientation. Instead, it identifies only one constant orientation. Hence, two extreme rela-
tive orientations and an average value between them were tested independently: Φ1 = 2◦,   
Φ2 = 6◦ , and Φ3 = 10◦ , using the contact model described earlier. Parallel and oblique 
contact forces between two fibers modelled by B31 elements are plotted respectively in 
Figs. 5(a) and (b) as a function of the penetration depth δ for each relative orientation. Each 
contact force is modelled by Hertz’s law for parallel and oblique cylinders [30–32]. It can 
be observed that the numerical contact model accurately reproduces the analytical contact 
models (n ≈1000). Therefore, the assumption adopted here of controlling the contact stiff-
ness through the penetration depth � seems reasonable.

However, the relative orientation change between every two fibers is costly in terms 
of realization and CPU time. An alternative solution could be to identify one average 

Fig. 4  Simulation contact model: scale factor contact force-penetration relationship [29]

((a) PParalleel coontaact mmoddel ((b) OObliiquee contact mmoddel

Fig. 5  The contact models
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relative orientation, and then apply it to the entire fiber network. This alternative is 
available only if some orientations are simulated independently, and each one of them 
offers similar compaction curves. For this reason, the identified relative orientations Φ1,  
Φ2 = Φaverage and Φ3 were used to simulate the compaction test. The three simulations 
were also compared with the compaction curve obtained by the parallel contact model 
( Φ0 = 0 ). The simulations were performed using the simulation strategy developed in 
this paper. The parameters used and the identification curves are given in Table 1 and 
Fig. 6. The results obtained are displayed in Fig. 7 where the compaction load is plotted 
as a function of the displacement U used to control the compaction test. During the fiber 
rearrangement phase, the three relative orientations do not influence the global com-
paction behavior because the compaction load is not yet significant. However, the final 
compaction load depends on the contact relative orientation. As shown in the Fig.  7, 
the final compaction load for the parallel contact model (17 N) is 44% higher than the 
oblique contact load (9.5 N) (for Φ2 = Φaverage = 6◦ ). In fact, as explained earlier, the 
fibers are not all parallel, for example, in the Fig. 1; a certain percentage of oblique fiber 
contacts is always present in the fiber network and it must be taken into consideration, 
and vice versa when considering only the oblique fiber contact.

Table 1  The simulation contact 
parameters given by the 
analytical models

Φ d(mm) S S0

0° 1.10
−7 1.0008 0.74

2° 4, 6.10−5 1.0101 0.021
6° 4, 6.10−5 1.0047 0.0087
10° 5.10

−5 1.0045 0.013

Fig. 6  Identification of the simulated parallel (Φ = 0°) and three different oblique contact model given by 
the analytical models (n ≈1000)
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3.3  Theoretical and Numerical Benchmarks

The aim of this section is to present the analytical and numerical test cases used to iden-
tify accurate and reliable simulation parameters. The advantage of these test cases is that 
they are simple but crucial, and their reference solutions can be calculated analytically or 
obtained numerically. At the same time, they are also useful to gather meaningful and effi-
cient information about the static and the kinematic behavior of the fibers in a reasonable 
CPU time.

3.3.1  The Dynamic Phase: Fiber Rearrangement Test Case

Fiber rearrangement is an important phenomenon at the fiber scale because it reflects the 
effect of friction on the fiber kinematics. For this reason, the compaction experiment was 
performed at a low velocity ( vtest ≈ 5.22mm∕min ) to ensure a quasi-static test and avoid 
inertia effects, which could modify the fiber kinematics. From a numerical perspective, the 
simulation strategy must also provide quasi-static simulations. Therefore, a test case based 
on the rearrangement phase of the compaction test was developed and used to identify the 
appropriate parameters to ensure a quasi-static simulation. The test case attempts to study 
the rearrangement of three beams placed on an analytic rigid plate as displayed in Fig. 8. 
The upper beam is subjected to a displacement uz along the z-axis. Then the displacements 
uy2 and uy3 along the y-axis are calculated respectively for the other two beams (2 and 3) 
as a function of uz . A friction coefficient of � = 0.2 was used. This value was estimated 
experimentally using polyester fibers [33]. Since the analytical solution for such cases is 
not evident, an implicit dynamic analysis in Abaqus/Standard was used instead as a refer-
ence solution for the present test case. The results are automatically checked for accuracy 
in Abaqus/Standard analysis [29] since it is based on an implicit integration schema and 
the equilibrium equation is solved at every time increment. The displacements uy2 and uy3 
obtained for beams 2 and 3 were considered as a reference to validate those obtained by 
the dynamic explicit analysis. Since the test case model is symmetric relative to the plane 

Fig. 7  Simulation of the compac-
tion test using the parallel contact 
model and the oblique contact 
model with three identified rela-
tive orientations
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( S, �⃗x, z⃗ ) (cf. Figure 8), only the displacement uy = uy2 = −uy3 is plotted. The results of the 
reference solution are presented on Fig. 9 where the displacement uy along the y-axis is 
plotted versus the displacement uz , and on Fig. 8(b) where the final configuration of the 
beams is displayed. It can be observed that beam 1 remains in contact with beams 2 and 3 
at the end of the simulation.

The CPU time needed to run a quasi-static analysis can be very long using an explicit 
schema as the simulation cost is proportional to the number of time increments n, which is 
expressed as follows:

where T is the time period of the simulation, Le is the finite element size, � and � are the 
effective Lamé constants and � is the material density. A quasi-static event needs, naturally, 
a long time period T. In addition, linear beam elements (B31) are used (cf. Section 3.1), 

(2)n = T .max

(
1

Le

√
� + 2�

�

)

(a) Ini�al state (b) Quasi-sta�c rearrangement 
obtained by a dynamic implicit 

analysis: reference solu�on, 
vz=0.23mm/min 

(c) Rearrangement obtained by 
the explicit dynamic analysis with 

iner�a effects and contact loss, 
vz=1000mm/min, CPU �me=27min 

Fig. 8  Test case: rearrangement of three straight and parallel 3D beams

Fig. 9  Test case: the reference 
solution of the displacement U

y
 

obtained by the dynamic implicit 
analysis
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so the mesh size used Le is small ( Le = 0.3mm corresponding to 50 elements per fiber) 
to properly simulate fiber bending. Therefore, according to Eq. 2, more time increments 
are needed in the present analysis, increasing the computational cost. The test case 
described earlier was used in order to illustrate this phenomenon. Different time periods 
T were tested, i.e. different velocities vz were tested from vz =

uz

T
 , where uz is the displace-

ment applied on beam 1. It was concluded that a velocity of vz = 0.23mm∕min enables 
exactly the same displacements to be obtained as with the reference solution, as displayed 
in Fig.  10(a). However, the simulation time is unacceptably long (≈12 h) for only three 
beams. At this stage, it is worth asking how the fiber rearrangement in Abaqus/Explicit can 
be properly simulated in a reasonable CPU time. This is the objective of the present step of 
the simulation strategy development.

Based on Eq. 2, two classical procedures can be used: Increasing the material density � , 
or artificially reducing the time period T (i.e. increasing the loading velocity). Increasing 
the material density is not suitable because it will induce a change in the equilibrium of the 
fibrous assembly in the initial state: the higher the density, the more the microstructure is 
impacted by the gravitational and internal field. Therefore, the fibers’ initial positions are 
no longer the same as in the real specimen. For this reason, reducing the time period T was 
adopted in the present study. A reasonable CPU time, e.g. a couple of hours, must be tar-
geted in view of the longer-term objectives of the study of using fiber assemblies with hun-
dreds of fibers. Preliminary simulations of the compaction test, which consists of 40 fibers, 
were performed and it was concluded that a loading velocity in the range of 103mm∕min 
gives a CPU time of a couple of minutes, which is reasonable to reach the target CPU time. 
v
�

z
= 10

3mm∕min was tested using the rearrangement test case described earlier. The results 
are presented in Fig. 10(a) where the obtained displacement uy is compared with the refer-
ence solution.

Figure 8(c) represents the final configuration of the beams using the velocity v′

z
 . It can 

be observed that the simulation is no longer quasi-static since the displacements uy is not in 
accordance with the reference solution. Moreover, the beams do not remain in contact with 
one another as predicted by the reference simulation due to the inertia effects induced. To 
reduce the effect of inertia, a damping parameter is introduced according to the dynamic 
equilibrium equation (Eq. 3). In fact, Abaqus/Explicit is based on the time integration of 
this dynamic equilibrium equation using a time increment Δt as expressed in inequality 4.

(a) Influence of the velocity (b) Influence of material damping on fiber 
rearrangement for vz=1000mm/min.

Fig. 10  Influence of parameters on the fiber rearrangement
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[K], [D] and [M] are respectively the stiffness, the damping,and the mass matrices. Fext is 
the external forces vector.

Using a small mesh size Le , as is the case here, induces smaller increment times. In addi-
tion, reducing the time period T automatically increases the loading velocity. On the other 
hand, integrating the equilibrium equation (Eq. 3) through small time increments increases the 
inertia term [M]ü , especially when increasing the loading velocity, which induces significant 
inertia effects. For this reason, the inequality 5 must be respected to maintain a quasi-static 
simulation [29].

where Ke is the kinetic energy and Se is the strain energy. As explained earlier, the strain 
energy during the dynamic phase is lower than the kinetic energy. Reducing the absolute 
velocity u̇ using numerical damping is among the options to overcome this problem since 
material damping generates damping forces that are opposed to inertia forces. Material 
and contact damping were already used in such cases in a previous study [12]. The val-
ues adopted in [12] were tested on the test case above, but they did not reduce the iner-
tia effects. Different material damping coefficients were therefore tested on the same test 
case to identify the appropriate material damping parameters, and the results obtained 
are shown in Fig. 10(b). It can be seen that the resulting displacement uy is in accordance 
with the reference solution, and � = 10

5 appears to be the appropriate value for the loading 
velocity v�

z
= 10

3mm∕min . The strategy for reducing the computational time is essentially 
to increase the loading speed relative to the speed of the actual test. As a result of this 
increase, inertial forces appear and change the velocities and fiber paths compared to the 
actual test. Therefore, damping had to be added to oppose the inertial forces and reduce the 
speed of fiber movement. Although damping increases the CPU time slightly (Table 2), it 
remains nevertheless significantly below that of the quasi-static simulation ( ≈ 12 h), with 
similar displacements. In addition, the fiber positions in the experiment and simulation are 
very close after adding damping (Fig. 10(b)), which proves that adding proper fiber damp-
ing during the simulated compaction can control the CPU time cost and the simulation is 
close to the experimental results. The influence of adding material damping on contact 
forces in the static phase is discussed in the following section.

3.3.2  The Static Phase: Test Case

After studying the rearrangement phase, it is necessary to analyze the behavior of linear beam 
elements in the static phase. In the compaction experiment, the initially curved beams become 
straighter and more compressed. This state can be modelled by the test case illustrated in 

(3)[K]u + [D]u̇ + [M]ü =
∑

Fext

(4)Δt ≤ min

(
Le

√
�

� + 2�

)

(5)Ke < 10
−2Se

Table 2  Influence of material 
damping on the CPU time of the 
test case in Fig. 8

α 0 10
4

10
5

CPU time (s) 27 30 34
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Fig. 11(a). It consists of three straights parallel beams modelled by B31 elements. The upper 
beam (beam 1) is in contact with the lower ones (beams 2 and 3). The centerlines of the lower 
beams are shifted from the centerline of the upper one by an angle � relative to the z-axis 
(Fig. 11(a)). The three beams are placed in a rectangular analytic rigid plate to carry out a con-
fined compaction test. Forty polyester fibers have been compacted in order to validate the pre-
sent simulation strategy. The test will be described forwards in the Experimental benchmark.

According to the obtained compaction test curve (Fig. 2(b)), the forty fibers of the specimen 
undergo a total load of 12N. Therefore, the three beams in the test case undergo a total com-
paction load of 1N in addition to their own weight ��⃗w . A line-load equal to ‖ �⃗q‖ = 0.066N∕mm 
(the fiber length is 15 mm) is applied on the upper beam along the z-axis.

Let ����⃗NF and ������⃗NF′ be the normal contact loads applied by beam 1 on respectively beam 2 and 
beam 3, ����⃗RF and �����⃗RF′ the reaction forces applied by the analytic rigid plate on respectively beam 2 
and beam 3 along the y-axis and the z-axis (cf. Figure 11). The main objective of the present test 
case is to analyze the response of the normal contact loads ‖ ����⃗NF‖ and ‖������⃗NF′‖ and the reaction forces 
‖ ����⃗RF‖ and ‖ �����⃗RF′‖ as a function of the external load ‖ �⃗q‖ . Since the problem is symmetric with respect 
to the plane (A, �⃗x, z⃗) , the normal force ‖������⃗NF′‖ is theoretically the same as ‖ ����⃗NF‖ . Likewise, the reac-
tion force ‖ �����⃗RF′‖ is the same as ‖ ����⃗RF‖ . The results obtained will be used to verify: (i) the accuracy of 
contact forces and reaction forces in the particular case of the static state of the compaction test; (ii) 
the influence of the material damping coefficient on the contact forces and reaction forces during 
the static case. The results are compared with the analytical solution of the same test case. In fact, 
particularly in this case, the normal contact behavior is defined as a “hard contact” to restrict the 
angle β variation. The test case can therefore be treated as a rigid solids problem. The application a 
static equilibrium led to determine the magnitude of ‖ ����⃗NF‖ and ‖ ����⃗RF‖:

(6)‖ ����⃗NF‖ = ‖������⃗NF�‖ =
q + w

2cos𝛽

(7)‖ ����⃗RF‖ = ‖ �����⃗RF�‖ =

�
(
1

2
(q + w)tan𝛽)

2

+ (
1

2
(q + 3w))

2
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The numerical evolution of ‖ ����⃗NF‖ and ‖������⃗NF′‖ as a function of ‖ �⃗q‖ and that of ‖ ����⃗RF‖ and 
‖ �����⃗RF′‖ are plotted in Fig.  11(b). The numerical results are compared with the analytical 
ones in both figures. Analytically, as ‖ ����⃗NF‖ and ‖ ����⃗RF‖ are linearly dependent on the compac-
tion load ‖ �⃗q‖(cf. Appendix), the same linearity evolution is predicted by linear beam ele-
ments (B31). The test case symmetry is also respected. Quantitatively, the marginal error 
between the analytical and the numerical values is negligible (cf. Figure  11(b)), which 
means that the material damping used has no impact on the contact forces. The term [D]u̇ 
in the dynamic equilibrium equation (cf. Equation 3) is significantly low in the static phase 
relative to contact forces. Therefore, the damping forces are negligible compared to the 
contact forces.

3.3.3  The Simulation Strategy: Summary

The CAD model of the fibrous microstructure is obtained by post-processing the X-ray 
tomography images of the real fiber network. Each fiber is modeled by 3D beam linear 
finite elements. The compaction plates are modelled by rigid analytical shells; the upper 
one is fixed, while the lower one is controlled by a displacement U. The loading velocity 
is 103mm∕min to reach a CPU time target of tens of minutes. A material damping coeffi-
cient of � = 10

5 is used to control inertia effects. The general contact algorithm provided 
by Abaqus is used for the entire model, with a friction coefficient of � = 0.2 [33]. The 
normal contact behavior is defined as a power function between the contact force and the 
penetration δ. Some assumptions regarding the mechanical and the geometric model must 
be taken into account: (i) the friction coefficient between two polyester fibers is difficult to 
estimate and depends on many variables [33], therefore an average value of 0.2 was used 
[33]; (ii) the coefficient of adhesion is assumed to be the same as the friction coefficient; 
(iii) the local strain between fibers is ignored because of the rigidity of the beams’ cross-
section but its effect on rigidity is embedded in the contact law (cf. Section 3.2 Eq. 1); (vi) 
the cross-section diameter is considered identical and constant for all the fibers.

4  Results and Discussion

The compaction test was simulated using the simulation strategy developed in this paper. 
As explained in the previous section, both contact cases between the fibers – parallel and 
oblique contacts take place during compaction (cf. Section  3.2). Therefore, the results 
obtained by both contact models were compared with the experimental ones. The compac-
tion load F as a function of the displacement U is presented in Fig. 12(a) for the parallel 
contact case, in Fig. 12(b) for the oblique contact case and in Fig. 12(c) for the identified 
contact model. In order to better understand the fiber behavior, it is interesting to analyze 
the simulation results from an energetic perspective as well. Figure 13 displays the evolu-
tion of the Kinetic energy Ke , penalty work Pw and strain energy Se of the whole model. 
The kinetic energy represents the fiber rearrangements, the penalty work is the work done 
by contact penalties (i.e. contact energy), and since the fibers are initially curved, the strain 
energy represents the elastic strain of the fibers due to bending.

When the displacement is in the range of U ∈ [0, 0.55](mm) , the compaction load of both 
contact models, parallel and oblique, is too low ( ≈ 98% lower than the maximum load). In 
this compaction phase, the initial fiber fraction ( vf0 = 37.7% ) allows sufficient space for the 
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fibers to move as rigid bodies. The fiber rearrangement in this particular case is characterized 
by a negligible strain energy relative to the total kinetic energy, as shown in Fig. 13. Conse-
quently, in this case, the condition ensuring a quasi-static simulation is not respected. How-
ever, the identified damping coefficient seems to be adequate to control the fiber rearrange-
ment and stabilize the simulation. As the strain energy remains negligible, the penalty work 
increases at U = 0.26mm , which means that the interaction between fibers, due mainly to fric-
tion, increases. For both contact models, starting from a displacement value of U = 0.55mm , 
the compaction load progressively increases, which means that the total stiffness of the fiber 
assembly increases relative to the beginning of compaction. In fact, fiber bending begins to 
take place simultaneously with the fiber rearrangement, as is proven by the increase in the 
strain energy at the same displacement value ( U = 0.55mm ). At this particular point, all the 
model energies are at the same level ( Ke ≈ Se ≈ Pw ), and it marks the beginning of a transi-
tion phase ( U ∈ [0.55, 1.12](mm) ) between fiber rearrangement and fiber locking. The lock-
ing of fibers is a logical consequence of the relative motion between the fibers. It depends on 
(i) mechanical parameters: intrinsic (e.g., friction coefficient of the fibers) and non-intrinsic 
(e.g., loading velocity); and (ii) geometric parameters: fiber orientation, curvature, the distri-
bution of contact points in the fiber network. This distribution allows the transfer of contact 

Fig. 12  Experimental compaction test compared to the compaction simulation obtained with

Fig. 13  The Whole model strain 
energy, penalty work and kinetic 
energy during the compaction 
simulation
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forces, which generate relative motion between the fibers. This relative motion leads to a 
change in the geometric position of the fibers, resulting in the closure of the pores between the 
fibers and the formation of locking. With increasing compression force, this locking persists 
or is released by the movement of one or more fibers. The transition phase is as crucial as the 
other phases; in fact, the fiber rearrangement, interactions and deformations occur simultane-
ously. Therefore, the numerical model must be able to reproduce, as closely as possible, these 
micro-mechanisms compared to the real compaction test. Based on the results from Fig. 12(a, 
b), the proposed model seems to reliably simulate the transition phase since the numerical 
compaction curve is in accordance with the experimental data.

When the displacement reaches the value U = 1.12mm , the penalty work increases by 
almost 92% to its peak value, as shown in Fig.  13. Before reaching static equilibrium, the 
fiber network passes through a metastable state. Therefore, fiber interaction increases, causing 
an increase in the penalty work. Afterwards, a rearrangement of the fibrous microstructure 
takes place and a stable equilibrium is reached, which explains the decrease in the penalty 
work and the slight decrease observed in the compaction load ( ≈ 9.8%) in both Figs. 15(a, b) 
at U = 1.12mm . Both parallel and oblique contact models give similar and accurate results 
concerning the rearrangement phase U ∈ [0, 0.55] , and the transition phase U ∈ [0.55, 1.12] . 
Although the impact of fiber–fiber contacts during these two phases is non-negligible, it 
remains insufficient to cause a noticeable difference between the two contact models. How-
ever, a difference is observed concerning the final compaction load: The value predicted 
by the parallel contact model is 30% higher, and the value predicted by the oblique contact 
model is 19% lower (for the average value Φ2 = 6◦ ) than the maximum experimental value. 
As explained earlier, the average angle was chosen here for the simulation because: tested 
three extreme cases ( Φ2 = 2◦, 6◦, 10◦ )) and the simulation results were approximated for 
each direction. Both contact cases are present within the fiber network due to the permanent 
change in the contact angle between two neighboring fibers, but this variation is very small. 
Therefore, considering only one contact case cannot model the effect of both contact cases 
together. However, it is important to recall that fiber assemblies of hundreds of fibers are tar-
geted in further studies. Hence, in order to predict the exact experimental final compaction 
load the contact angle change needs to be taken into account, which would be expensive in 
terms of realization and CPU time. Therefore, it is possible to choose the average angle for 
subsequent simulations as a cost-saving option without introducing large errors. Instead, the 
proposed contact models with the proposed simulation strategy provides reasonable results in 
a total CPU time of 14mn42s for 40 fibers. Furthermore, the proposed model can be pushed 
further by identifying the contact parameters ( S , S0 and d ) in order to reduce the difference 
between the numerical final compaction load and the experimental one. The compaction curve 
obtained is displayed in Fig. 12(c) where the difference is reduced to almost 11%. The iden-
tified parameters (cf. Table 3) lead logically to a contact behavior within the zone between 
parallel contact and oblique contact behaviors as presented in Fig. 14. This shows that it is 
worthwhile investigating in greater depth in further studies and searching for a general contact 
model in order to combine both parallel and oblique contact behaviors.

Although the developed model obtained by X-ray tomography predicts the same macro-
scopic behavior as the one obtained experimentally, the microscopic behavior should also be 

Table 3  The simulation contact 
parameters of the identified 
contact model

d(mm) S S0

1.10
−7 1.001 0.05
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verified by comparing with the experimental results. To verify the accuracy of the initial fiber 
bundle model, gravity is added to it and only the effect of gravity on the fiber bundles is con-
sidered. As shown in the Fig. 15, comparing the real positions of the fiber bundles after adding 
gravity in the initial state, the change is negligible. The volume fraction of the initial state of 
the fiber bundle used for the experiment is 37.7%, which is calculated by MATLAB: the total 
volume of the fiber bundle divided by the volume of the compression cassette in which the 
fiber bundle is located. Thus, the model can be further simulated for compression experiments.

The results of compaction test are presented in Fig. 16 where the fiber positions predicted by 
the model are compared with their real positions during the compaction test. In addition, quasi-
parallel fibers have a certain curvature. The average curvature projected on XY and YZ plane of 
fiber bundle in its initial state (at U = 0 mm) and after compaction (at U = 1.15 mm) was calcu-
lated by MATLAB as shown in the Table 4. It can be seen that the curvature of the aligned paral-
lel fiber bundles in the compression experiment has little effect. The results already be applied to 
simulations: the movement is locked in the fiber orientation (Boundary Conditions), which will 
more closely resemble the experimental results. Concerning the earlier stages of compaction (the 
second stage, i.e.U = 0.21mm , is taken as an example), the experimental and numerical posi-
tions of the fibers seem to be very close, the mean distance between simulation and experiment 

Fig. 14  The identified contact 
model compared to the parallel 
and the oblique analytical contact 
models

Fig. 15  Fiber positions with 
gravity in the developed model 
compared with their real posi-
tion in the initial compaction 
test (with the volume frac-
tion = 37.7% in the initial experi-
ment state)
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is 0.32 mm, in the finally state, which is 60% of the fiber’s diameter. At further levels of compac-
tion (e.g. U = 0.58mm at the eighth stage) the marginal error between the fibers will normally 
increase progressively, yet, it does not exceed the fiber diameter (0.5 mm). At the final stage of 
compaction ( U = 1.15mm ), the fibers have regained their experimental position. In fact, as the 
fiber volume fraction increases, the fibers rearrange and converge to the experimental micro-
structure. Taking into account the difficulties of simulation at the fiber scale and the assump-
tions made, the experimental/numerical positions and orientations of the fibers can be considered 
accurate. The microscopic positions of the fibers can definitely be improved further, but they are 
accurately controlled. Furthermore, since the numerically predicted compaction curve is very 
close to the experimental one, this difference in the fiber position does not appear to have a sig-
nificant effect on the behavior of the fiber network. In other words, a controlled disturbance of the 
fiber network microstructure does not significantly change its macroscopic behavior.

5  Conclusions

A numerical model has been proposed to simulate the compaction of quasi-parallel fiber 
assemblies at the fiber scale. A compaction test of forty polyester fibers was performed to 
enrich the development of a simulation strategy and validate the numerical results. The 
fiber assembly microstructure was reconstructed from the X-ray tomography images of the 

Fig. 16  Fiber positions predicted by the developed model compared with their real positions (with the dif-
ferent volume fraction in the experiment) during the compaction test

Table 4  The average curvature 
projected on the XY and YZ 
plane in the initial and finial state 
of compaction

Displacement Projected average curvature  (m−1)

XZ-plane YZ-plane

U = 0 mm 0.241 0.248
U = 1.15 mm 0.228 0.221
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real specimen. A CAD model was then obtained, automatically and directly, from the input 
images, then used afterwards to simulate the compaction test based on the simulation strat-
egy developed. This strategy includes the choice of the finite elements, the analysis platform, 
the fiber contact law and the analysis parameters to ensure an accurate fiber rearrangement. 
Beam finite elements were chosen to model the fibers and optimize the calculation cost. The 
dynamic explicit analysis in Abaqus/explicit appears to be compatible with the characteriza-
tion of fibrous media, which include a large number of contacts. The normal contact behavior 
between the fibers was accurately modelled using the contact stiffness scaling. This method 
seems to be suitable for the beam’s rigid cross-section, but it cannot take into consideration 
the permanent change of the fibers’ relative orientations. However, the alternative solution 
proposed of using one average relative orientation gives an accurate contact behavior. The 
contact tangential behavior was also modelled through the Coulomb friction model, and accu-
rate fiber rearrangements were obtained using an appropriate material-damping coefficient.

The simulation strategy has been validated by comparing the mechanical response of the compac-
tion experiment with the numerical one. The proposed model offers encouraging results in accordance 
with the real compaction test. In addition, the total CPU time of the compaction simulation is 14min42s 
for forty fibers, which is promising for the integration of more fibers (hundreds of fibers are targeted in 
further work). The proposed numerical method is directly related to the real microstructure evolution 
of the fiber assembly. Therefore, it can be used to predict, non-exhaustively, the fiber orientations and 
kinematics, the influence of friction on the rearrangement, the fiber–fiber interactions and other features 
that are difficult to explore experimentally at the fiber scale. More loading trajectories will be performed 
on a bundle of hundreds of fibers to gather more information at the microscopic scale (fiber scale), and 
then formulate a mechanical behavior at the mesoscopic scale (yarn scale).

Appendix: The Static Case

In order to find the magnitude of �����⃗NF and �����⃗RF (Fig. 11(a)), the static equilibrium is applied 
as follows.

• The isolated groups.

Let G1 = {beam1, beam2, beam3} be the first isolated group and G2 = {beam2} the sec-
ond isolated group. G1 is subjected to the reaction forces ������⃗RFz and �������⃗RFz

′ applied by the 
analytical plate along the z-axis, ������⃗RFy and ��������⃗RFy

′ applied by the analytical plate along the 
y-axis, the load �⃗q along the z-axis and the weight ��⃗w . G2 is subjected to the normal force 
�����⃗NF applied by beam 1 along the vector �⃗n , and the reaction forces ������⃗RFz and ������⃗RFy applied by 
the analytic rigid plate respectively along the z-axis and the y-axis.

• Application of the static equilibrium:

The Eqs. (8) and (9) bellow satisfies the static equilibrium of both isolated groups G1 
and G2 respectively.

(8)2������⃗RFz + 3��⃗w + �⃗q = �⃗0
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• Scalar projections of Eqs. (8) and (9) on the x-axis and the z-axis:

The static equilibrium of G1 is projected on the z-axis as formulated in Eq.  (10), 
and the static equilibrium of G2 is projected on the y-axis and the z-axis as formulated 
respectively in Eqs. (11) and (12).

Basing on Eqs.  (10), (11) and (12), the analytical expressions of both normal force 
NF and reaction force RFy and RFz are expressed as follows.
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