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Abstract
In this work, the flow of power-law fluids through anisotropic fibrous media
is revisited, upscaling the fluid flow at the pore scale with the homogenization
method of multiple scale expansions for periodic structures. This upscaling
technique permits a quantitative study of the seepage law by performing
numerical simulation with simple two-dimensional periodic arrays of circular
solid inclusions. The significant role of the solid fraction, the fluid rheology and
the porous media anisotropy on the resulting macroscopic flow law is underlined
from the simulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fluid flow through anisotropic fibrous media plays an important role in many engineering
applications, such as polymer composites, textiles and paper manufacturing processes. Thus,
to optimize such processes, a proper description of the flow through such porous media is
required.

When the flowing fluid can be considered as Newtonian, straightforward extensions of the
well-known Darcy law [1] to anisotropic fibrous media permit a good prediction of the flow
process. They are now widely used to optimize, for instance, paper pressing or composites
manufacturing processes such as resin transfer moulding (RTM) [2]. Constitutive parameters
that are required are the fluid viscosity and the components of the permeability tensor. In
order to avoid cumbersome laboratory experiments, these components can be determined
using analytical or numerical approaches. In the literature, there exist extensive theoretical
and numerical works on the Stokes flow in periodic and random arrays of cylinders [3–19].
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From these works, it is now well known that the permeability of such a porous medium depends
on size, concentration and arrangement of fibres. These works, carried out on a particular
geometry, represent an interesting step toward understanding the flow through more complex
porous media as in [20].

In contrast, the modelling of the flow of non-Newtonian fluids through anisotropic fibrous
media has received less attention, very few experimental, analytical or numerical studies are
found in the literature. Most of them deal with power-law flowing fluid; this simple estimation
of the fluid rheology is a first and reasonable approximation to model flow phenomena arising
in many manufacturing processes such as paper or textile coating, and thermoplastics polymer
composites processing [21,22]. Due to the strong coupling between the porous media geometry
and the rheology of the fluid, the extension of the Darcy law to power-law fluid flowing in
anisotropic porous media is quite tricky. Several authors have proposed quantitative analytical
expressions of the flow law that are often restricted to simple fibrous media. They are generally
one-dimensional modified versions of Darcy law built on phenomenological considerations or
direct numerical simulation at the pore scale [23–27], except in the latest work of Woods
et al [28, 29]. Indeed, Woods et al proposed a first complete expression of the flow law
of a power-law fluid through a rectangular array of parallel and infinite cylinder of elliptic
cross-section. However, the flow law given in [29] is not intrinsic, since it is not written in a
tensorial form. Moreover, its extension to another type of fibrous media is not straightforward.
On the other hand, recent theoretical investigations based on rigorous upscaling techniques
have proposed the general structure and the fundamental properties of the flow law of power-law
fluids through fibrous media [30–32]. In particular, Auriault et al [32] have derived the most
general tensorial form of the flow law in systems of different types of anisotropy. Unfortunately,
no quantitative study was performed from these purely theoretical works to link the constitutive
parameters of the macroscopic flow law with microstructural ones characterizing the fibrous
media geometry at the pore scale, namely the rheology of the fluid.

Hence, the aim of this work is (i) to study quantitatively the flow of power-law fluids
through anisotropic fibrous media following the general and theoretical framework proposed
in [32], (ii) to emphasize the role of microstructural parameters on the resulting macroscopic
flow law. For this purpose, a brief presentation of the upscaling technique used in [32], as well
as the fundamental results deduced from it are given in section 2. In section 3, we investigate
quantitatively the as-derived flow law. This is done by solving numerically, on representative
elementary volumes of fibrous media, special boundary-value problems directly deduced from
the upscaling process. In this paper, such a methodology is achieved in the case of two
very simple types of anisotropic fibrous media, i.e. square or triangular arrays of infinite and
parallel cylinders of circular cross-section. The choice of such simple microstructures is not a
restriction of the present methodology. To validate our approach, we compare our results with
analytical or numerical quantitative results reported in the literature. Conclusions drawn from
this numerical work underline the significant role of the solid fraction, the fluid rheology, the
porous media anisotropy on the resulting macroscopic flow law and the domain of validity of
models already proposed in the literature.

2. Determination of the macroscopic flow law

In previous works [30–32], the flow law for a power-law fluid in porous media was rigorously
derived by upscaling the physics at the pore scale. A deterministic upscaling technique
was used, namely the homogenization method of multiple scale expansions for periodic
structures [33–35]. Generally speaking, the main advantages of the method rely upon the
possibility of: (a) avoiding prerequisites at the macroscopic scale; (b) modelling finite size
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macroscopic samples; (c) modelling macroscopically non-homogeneous media or phenomena;
(d) modelling problems with several separations of scales; (e) modelling several simultaneous
phenomena; (f) determining whether the system ‘medium + phenomena’ can be homogenized
or not; (g) providing the domains of validity of the macroscopic models. The objective of
this section is to give a brief review of the derivation by homogenization of the flow law for a
power-law fluid in porous media. For details related to the analysis below, the reader is referred
to [32].

2.1. Upscaling process: methodology

Physical phenomena in heterogeneous systems such as porous media can be homogenized,
i.e. may be modelled by an equivalent continuous macroscopic description, provided that the
condition of separation of scales is satisfied [33, 34]. This fundamental condition may be
expressed as

ε = l

L
� 1, (1)

in which l and L are the characteristic lengths of the heterogeneities at the pore scale and of
the macroscopic sample or excitation, respectively. Based on the pore scale description of the
problem (section 2.2) and assuming without loss of generality the periodicity of the medium,
the macroscopic equivalent model is obtained from the description at the heterogeneity
scale by [35]: (i) writing the local description in a dimensionless form and estimating the
order of magnitude of the resulting dimensionless numbers with respect to the scale ratio ε

(section 2.3); (ii) looking for the unknown fields in the form of asymptotic expansions in powers
of ε and solving the boundary-value problems that arise at the successive orders of ε, after
introducing the asymptotic expansions in the local dimensionless description (section 2.4).
The macroscopic equivalent model is obtained from the compatibility conditions, which are
the necessary conditions for the existence of the solutions to the boundary-value problems.

2.2. Fluid flow description at the pore scale

Consider the flow through a porous medium of periodic representative elementary volume
(REV) � and bounded by ∂�. Within the periodic REV, the fluid occupies the domain �l,
the solid occupies the domain �s, and the fluid–solid interface is denoted by � (figure 1).
Thus, the solid fraction and the porosity of the porous medium are defined as c = �s/� and
φ = �l/�, respectively. The porous matrix is assumed to be rigid and the liquid is viewed as
an incompressible and purely viscous fluid. Its stress tensor at the pore scale σ is defined by
the following constitutive equations:

σ = −pδ + 2µD, (2)

where p is the pressure, δ is the identity tensor, µ is the viscosity and D is the strain rate tensor
defined as a function of the local velocity field v, i.e. the velocity field at the pore scale,

D = 1

2
(∇v + ∇Tv). (3)

The fluid viscosity µ is supposed to be a power-law function of the microscopic shear strain
rate γ̇eq, i.e.

µ = µ0γ̇
n−1
eq , γ̇eq =

√
2D : D, (4)
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Figure 1. A schematic of the periodic porous medium and associated REV, �.

whereµ0 is the shear consistency of the fluid, and where the power-law exponentn characterizes
the strain rate sensitivity of the fluid. At the pore scale, the momentum balance for an isothermal
steady slow flow (inertial effects are neglected) of such a power-law fluid is written as

2µ0∇·(γ̇ n−1
eq D) = ∇p in �l. (5)

To complete the pore scale description, the incompressibility condition as well as the no-slip
boundary condition on � have to be considered,

∇·v = 0 in �l, (6)

v = 0 on �. (7)

The set of equations (5)–(7) is the pore scale description of the flow problem.

2.3. Dimensionless pore scale description

Let us introduce in equations (5)–(7) the following representation of all dimensional variables:

X = ly, v = vcv
∗, p = pcp

∗, µ0 = µ0µ
∗
0, (8)

where the subscript ‘c’ and the superscript ‘∗’ denotes characteristic quantities (constant) and
dimensionless variables, respectively. The vector X is the physical space variable and y the
so-called dimensionless microscopic space variable [35]. It is obtained by normalizing X
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using the local pore length scale l. The formal dimensionless set that describes the flow is thus
written as

2µ∗
0∇y ·(γ̇ ∗(n−1)

eq D∗) = Q∗∇yp
∗ in �∗

l , (9)

∇y ·v∗ = 0 in �∗
l , (10)

v∗ = 0 on �∗, (11)

where ∇y is the dimensionless gradient operator with respect to the microscopic space
variable y. The dimensionless pore scale description (9)–(11) introduces a dimensionless
number, Q∗, which represents the ratio of the pressure term to the viscous forces:

Q∗ = pc

µ0

(
l

vc

)n−1 (
l

vc

)
. (12)

The order of magnitude of Q∗ was estimated using the following phenomenological argument:
the local viscous flow is driven by a macroscopic pressure gradient [35], which is equivalent to

l

µ0

(
l

vc

)n−1 (
l

vc

)
= O

(pc

L

)
, (13)

so that

Q∗ = pc

µ0

(
l

vc

)n−1 (
l

vc

)
= O(ε−1). (14)

2.4. Upscaling

We may now employ the homogenization procedure by first introducing the multiple scale
coordinates [33, 34]; the macroscopic dimensionless space variable, x = X/L and the
microscopic dimensionless space variable, y = X/l, both being linked by x = εy. Applying
the technique of multiple scale expansions, the velocity v∗ and the pressure p∗ fields may be
put in the form of asymptotic expansions of powers of ε

v∗ = v∗(0)(x, y) + εv∗(1)(x, y) + ε2v∗(2)(x, y) + · · · , (15)

p∗ = p∗(0)(x, y) + εp∗(1)(x, y) + ε2p∗(2)(x, y) + · · · , (16)

where the velocity fields v∗(i)(x, y) and the pressure fields p∗(i)(x, y) are y-periodic. The
dimensionless gradient operator is now written as ∇y + ε∇x . Incorporating the above
expansions in the dimensionless set (9)–(11) and identifying at the successive orders of ε

allow the construction of appropriate boundary-value problems. Solving these boundary-value
problem leads to the macroscopic description [32].

The lowest order yields

∇yp
∗(0) = 0, p(0) = p∗(0)(x). (17)

Hence, the first-order pressure is constant over the period �∗.
By considering the next order, a boundary-value problem with respect to the first order

velocity v∗(0) and to the second order pressure p∗(1) is obtained:

2µ∗
0∇y ·

((
γ̇ ∗(0)

eq

)n−1
D∗(0)

)
= ∇yp

∗(1) + ∇xp
∗(0) in �∗

l , (18)

∇y ·v∗(0) = 0 in �∗
l , (19)

v∗(0) = 0 on �∗ (20)
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with

D∗(0) = 1
2 (∇yv

∗(0) + ∇T
yv∗(0)), γ̇ ∗(0)

eq =
√

2D∗(0) : D∗(0), (21)

where v∗(0) and p∗(1) are y-periodic. The macroscopic gradient of pressure ∇xp
∗(0) in (18)

appears as a source term. A weak formulation of the above set of equations is required for
determining its solution. For this purpose, we shall introduce the Hilbert space W ∗ of vectors
u∗ of �∗

l , that are y-periodic, divergence free and zero-valued over �∗. This Hilbert space is
equipped with the following inner product:

(u∗, v∗)W∗ =
∫

�∗
l

∇yu
∗ : ∇yv

∗ dy. (22)

Let us now multiply equation (18) by u∗ ∈ W∗ and integrate it over �∗
l . Integrating by parts,

applying the divergence theorem and then using the property of periodicity and the boundary
condition on �∗, the following weak formulation is finally obtained:

∀u∗ ∈ W∗,
∫

�∗
l

2µ∗
0(γ

∗(0)
eq )n−1D∗(0) : D∗(u∗) dy = −

∫
�∗

l

u∗ · ∇xp
∗(0) dy. (23)

It can be shown that the above problem presents a unique solution [32]. Moreover, the weak
form (23) shows that the fluid velocity v∗(0) is a function of the microscopic space variable y,
the macroscopic gradient of pressure ∇xp

∗(0), the material properties of the fluid (µ∗
0 and n),

and the geometry of the porous medium:

v∗(0)(x, y) = g∗(y, ∇xp
∗(0), µ∗

0, n, geometry). (24)

Finally, the integration of the volume balance at the second order,

∇x ·v∗(0) + ∇y ·v∗(1) = 0 in �∗
l , (25)

over �∗
l , yields

∇x ·〈v∗(0)〉 = 0 in �∗
l ,

〈v∗(0)〉 = 1

�∗

∫
�∗

l

v∗(0) dy = G∗(∇xp
∗(0), µ∗

0, n, geometry), (26)

which represents the dimensionless macroscopic equivalent behaviour within an order O(ε)

approximation. The second equality in (26) represents the dimensionless macroscopic flow
law for power-law fluid in a given porous media.

2.5. Comments

The above derivation of macroscopic flow law for a power-law fluid in porous media conjures
up the following comments:

(a) By definition, the macroscopic velocity 〈v∗(0)〉 is a volume average velocity. It can be
shown that this volume average is equal to a surface average, which ascribes to 〈v∗(0)〉 the
required properties of a Darcy’s velocity [35].

(b) Equations (23) and (26) show that the macroscopic velocity 〈v∗(0)〉 is an homogeneous
function of degree 1/n of the macroscopic pressure ∇xp

∗(0) [32]:

∀λ ∈ R, 〈v∗(0)(λ∇xp
∗(0))〉 = |λ|(1−n)/nλ〈v∗(0)(∇xp

∗(0))〉. (27)

(c) When n = 1, equations (23) and (26) prove that 〈v∗(0)〉 is a linear function of ∇xp
∗(0) [35].
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(d) Finally, the dimensional flow law for a power-law fluid through a rigid porous media can
be put in the form, within a relative error of O(ε),

〈v(0)〉 = −
(

l2

µ0

)1/n

l(1−n)/nH(∇p(0)) (28)

or

∇p(0) = −µ0

l2

[
1

l

]n−1

F (〈v(0)〉) (29)

with

∇·〈v(0)〉 = 0, (30)

where H and F are, respectively, homogeneous functions of degree 1/n and n of the
macroscopic gradient of pressure ∇p(0) and the velocity 〈v(0)〉.

2.6. Microstructural effects on the form of the macroscopic flow law

In [32], the most general tensorial form of the flow law in porous media of different types
of anisotropy has been investigated. In this section, we briefly outline the role of the
microstructure in the form of the flow law in the particular cases where the porous media
exhibit isotropy or orthotropy.

2.6.1. Isotropy. In this case, the previous flow law can be put in the form,

〈v(0)〉 = −
(

k∗l2

µ0

)1/n (‖∇p(0)‖
l

)(1−n)/n

∇p(0) (31)

or

∇p(0) = − µ0

k∗l2

[‖〈v(0)〉‖
l

]n−1

〈v(0)〉, (32)

where k∗ is a dimensionless rheological function that may depend on n and on the geometry
of the porous medium. In the particular case where n = 1, the above equations become

〈v(0)〉 = − l2k∗

µ0
∇p(0) (33)

and

∇p(0) = − µ0

k∗l2
〈v(0)〉, (34)

where k∗ stands for the usual isotropic dimensionless permeability.

2.6.2. Orthotropy. Following the general framework proposed in [32], we can establish the
flow law of a power-law fluids through an orthotropic porous medium with privileged directions
e1, e2, e3 as

∇p(0) = −µ0

l2
×


 1

k∗
1

(
|〈v(0)

1 〉|
l

)n−1

〈v(0)
1 〉e1 +

1

k∗
2

(
|〈v(0)

2 〉|
l

)n−1

〈v(0)
2 〉e2

+
1

k∗
3

(
|〈v(0)

3 〉|
l

)n−1

〈v(0)
3 〉e3


 , (35)
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where k∗
1 , k∗

2 and k∗
3 are three rheological functions that may depend on n and the geometry of

the porous medium. When n 	= 1, k∗
1 also depends on |〈v(0)

2 〉/〈v(0)
1 〉|; k∗

2 on |〈v(0)
3 〉/〈v(0)

1 〉| and
|〈v(0)

1 〉/〈v(0)
2 〉|; and k∗

3 on |〈v(0)
3 〉/〈v(0)

2 〉|, |〈v(0)
1 〉/〈v(0)

3 〉| and |〈v(0)
2 〉/〈v(0)

3 〉|; respectively. When
n = 1, the flow law is linear so that k∗

1 , k∗
2 and k∗

3 stands for the usual principal components of
the dimensionless orthotropic tensor.

3. Numerical investigations of the macroscopic flow law

The upscaling technique described earlier is of great interest since it gives us the general
form and properties of the macroscopic flow law. The objective of this section is to highlight,
more precisely, the influence of the microstructure of the porous media on the flow law. For this
purpose, we consider the flow perpendicular to the square and triangular arrays of infinite and
parallel fibres of circular cross-section. Therefore, numerical simulations have been performed
with simple two-dimensional periodic arrays of circular inclusions. After a brief description
of these two-dimensional microstructures under consideration (section 3.1), the numerical
method used is given in section 3.2. The general form of their associated flow law is presented
in section 3.3, and the numerical results are given in sections 3.5 and 3.4.

3.1. Description of the two-dimensional microstructures

The porous media under consideration are circular solid inclusions of identical radius a,
arranged in periodic patterns such as square and triangular arrays.

3.1.1. Square arrays of circular inclusions (figure 2). The size of the periodic REVs is l.
The solid fraction of the porous media, c = (πa2)/ l2, varies from 0 to cmax = π/4. These
two-dimensional microstructures display four material symmetry axis (dashed-dotted lines in
figure 2): e1, e2, the other two being observed at e1 + e2 and e2 − e1. In that sense, these
microstructures exhibit tetratropy: they are invariant through any rotation of angle κπ/2, where
κ is an integer.

3.1.2. Triangular arrays of circular inclusions (figure 3). In this case, the sizes of the periodic
cell are l and

√
3l. Thus, the solid fraction of the porous media, c = (2πa2)/(

√
3l2), varies

from 0 to cmax = π/(2
√

3). These microstructures exhibit hexatropy, since they have six
material symmetry axis (dashed–dotted lines in figure 3): e1, e2, the other four being located
at π/6, π/3, 2π/3 and 5π/6 from the e1 axis. In other words, the triangular microstructures
are invariant through any rotation of angle κπ/3.

3.2. Numerical method

Numerical results presented in the following have been obtained:

(a) Solving the boundary problem (18)–(20) in dimensional form on the periodic REVs �,

2µ0∇·((γ̇ (0)
eq )n−1D(0)) = ∇p(1) + ∇p(0) in �l, (36)

∇·v(0) = 0 in �l, (37)

v(0) = 0 on �, (38)

where the unknowns v(0) and p(1) are periodic, and where the macroscopic pressure drop
∇p(0) is a given source term. More precisely, as illustrated in figures 2 and 3, both
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α+π/2

a

∇∇∇∇

α

β
α

Figure 2. Square array of circular solid inclusions. The periodic REV of such a microstructure is
given by the centred finite element mesh (used to run the simulation).

microstructures were submitted to a macroscopic pressure gradient ∇p(0) of intensity
‖∇p(0)‖,

∇p(0) = −‖∇p(0)‖eα = −‖∇p(0)‖(cos(α)e1 + sin(α)e2), (39)

where α = (ê1, eα). The boundary-value problem (36)–(38) was solved with a mixed
pressure–velocity finite element formulation implemented in the software Femlab® [36].
A quadratic P2 and a linear P1 polynomial approximation were adopted for the velocity
field v(0) and the pressure p(1), respectively.

(b) Calculating the magnitude of the cell-averaged fluid velocity 〈v(0)〉 to obtain the
macroscopic flow law. The resulting macroscopic velocity field 〈v(0)〉 of intensity ‖〈v(0)〉‖
generally exhibited an angle β from the vector eα (see figures 2 and 3),

〈v(0)〉 = ‖〈v(0)〉‖(cos(α + β)e1 + sin(α + β)e2) = ue1 + ve2 (40)

or

〈v(0)〉 = ‖〈v(0)〉‖(cos(β)eα + sin(β)eα+(π/2)) = u′eα + v′eα+(π/2). (41)

The above procedure has been carried out on both microstructures, for power-law exponent n

and solid fraction c ranging from 0.3 to 1.5, and from 0.01 to (cmax − 0.01), respectively.

3.3. General form of the macroscopic flow law for both microstructures

In most works concerning the modelling of the flow through porous media similar to those
depicted in figures 2 and 3, i.e. involving circular solid inclusions of constant radius a, the
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α

β

a

α+π/2

∇∇∇∇

α

Figure 3. Triangular array of circular solid inclusions. The periodic REV of such a microstructure
is given by the centred finite element mesh (used to run the simulation).

microscopic characteristic length l is arbitrarily linked to the inclusion radius. In order to
compare our results with those obtained in these works, we also suppose that l = a. Note that
the two types of microstructures have two identical orthogonal symmetry axis, i.e. e1 and e2.
It is therefore possible to express the flow through such microstructures using an orthotropic
flow law such as (35). In the (e1, e2) plane, this leads to

∇p(0) = −µ0

a2

(
1

k∗
1

( |u|
a

)n−1

ue1 +
1

k∗
2

( |v|
a

)n−1

ve2

)
, (42)

where the k∗
i depend on the solid fraction c, the exponent n and the ratio |u/v|, i.e. the angle

α + β: k∗
i = k∗

i (c, n, α + β).

3.4. Numerical results: on-axis flow

A first set of ‘numerical experiments’ was performed with α = κπ/λ, i.e. along the symmetry
axis of the microstructures (λ, respectively, equals 4 or 6 for the square or triangular arrays,
and κ being a given integer). In all these calculations, the macroscopic velocity 〈v(0)〉 was
such that

∀κ ∈ N, β
(
α = κ

π

λ

)
= 0. (43)

This result, which could have been proved without the simulation (see appendix), is a direct
consequence of the symmetry property: the macroscopic velocity must be aligned with the
imposed pressure gradient when the latter is in the direction of one of the symmetry axes.
Moreover, due to the invariance of the microstructures through any rotation of angle 2κπ/λ,
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Figure 4. Square array of cylinders. Evolution of the dimensionless permeability k∗(c, 1) with the
solid fraction c. Marks represent simulation results, lines show the prediction of analytical models.

it was systematically found that

∀κ ∈ N, u′
(
α = 2κ

π

λ

)
= u′(α = 0), u′

(
(2κ + 1)

π

λ

)
= u′

(π

λ

)
. (44)

The flow along the e1 axis (α = 0) was then more precisely studied. In this situation, one can
write, in accordance with (42),

∂p(0)

∂X1
= − µ0

a2k∗(c, n)

[u

a

]n−1
u, (45)

where k∗(c, n) = k∗
1(c, n, α + β = 0).

Figures 4 and 5 show the evolution of k∗(c, 1) with the solid fraction c for the square
and triangular array of cylinders, respectively. For both microstructures, k∗ is a decreasing
function of c, and tends towards infinite when c → 0 and 0 when c → cmax. To validate our
methodology, simulation results were compared with analytical and numerical models cited
in the literature:

(a) For the two investigated microstructures, figures 4 and 5 prove that the current results are
in very good accordance with numerical results obtained by previous authors [3, 25].

(b) For the square microstructure, Bruschke and Advani [25] proposed a semi-analytical
hybrid expression of k∗ = k∗

hyb, which is a phenomenological combination of the analytical
cell model k∗

cell [9,14], known to give good prediction within the low solid fraction range,
and the analytical lubrication model k∗

lub [37], which is much more accurate at high solid
fractions:

k∗
hyb(c, 1) = ξ1k

∗
lub(c, 1) + ξ2k

∗
cell(c, 1) (46)
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Figure 5. Triangular array of cylinders. Evolution of the dimensionless permeability k∗(c, 1) with
the solid fraction c. Marks represent simulation results, lines show the prediction of analytical
models.

with,

ξ1 = 1 − eτ(�/(�−1)), ξ2 = 1 − eτ((�−1)/�), (47)

k∗
cell(c, 1) = − 1

8c

(
ln c +

3

2
− 2c +

1

2
c2

)
, (48)

k∗
lub(c, 1) = 1

3A

(1 − �)2

√
�

3


3

√
�

arctan(

√
(1 +

√
�)/(1 − √

�))
√

1 − �
+

1

2
� + 1




−1

,

(49)

where � = c/cmax, A = 1 and A = √
3 for the square array and the triangular array of

cylinders, respectively. The parameter τ is adjusted on the numerical data. Bruschke and
Advani [25] proposed to choose τ = 0.8. In the case of a triangular array of cylinders, the
lubrication model was sufficient to fit their numerical results [25]. As shown in figures 4
and 5, a better fit of our numerical results (and also Berdichevsky and Cai’s [3] numerical
data) is obtained with the hybrid approximation, by using τ = 0.5 for both microstructures.

The dimensionless permeability k∗(c, n) when n 	= 1 was also estimated from our
numerical simulations. The evolution of this parameter with the solid fraction c and for several
values of n is illustrated in figures 6 and 7 for the square and triangular arrays, respectively.
For both microstructures, it is found that k∗(c, n) is still a decreasing function of c, the trends
underlined in the Newtonian case still being valid. Likewise, as shown in figure 6, note that
a fairly good correlation is recorded between numerical results obtained by Bruschke and
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Figure 8. Square array of cylinders. Evolution of the dimensionless function r with the solid
fraction c and for various power-law exponents n. The continuous line is the prediction given by
(50) with ψ = 0.80.

Advani [25] and ours. Adopting a reasoning similar to that initially proposed in [25], we have
estimated the evolution of the dimensionless functions r = [k∗(c, n)/k∗(c, 1)]1/(1−n) for the
two types of microstructures and for n 	= 1. Figures 8 and 9 show that it is reasonable to
consider that inside the tested solid fraction range, r is n-independent and depends only on the
microstructure and the solid fraction c. Based on numerical results obtained in this work and
those gained in [28], a suitable expression for r is proposed

r =
√

�

ψ(1 − √
�)2

, (50)

where ψ is a constant. Figures 8 and 9 show that our numerical data can be fitted by the above
relation using ψ = 0.80 and 0.65 for the square and triangular array of cylinders, respectively.
As a consequence, the on-axis dimensionless permeability k∗(c, n) can be deduced directly
from k∗(c, 1) using (50).

3.5. Numerical results: off-axis flow

We now focus on situations for which α can be different from κπ/λ, to study the anisotropy of
the flow law more precisely. For this purpose, several ‘numerical experiments’ were performed
on the REVs using macroscopic pressure gradients ∇p(0)(α) of same intensity ‖∇p(0)‖ and for
which 0 � α � π . It was hence possible to determine the angle β(α) and the components u′(α)

and v′(α) of the resulting macroscopic velocity fields 〈v(0)〉(α). As examples, figures 10 and 11
show for the two types of arrangement the evolutions of the angle β and of the normalized
components u′(α)/u′(0) and v′(α)/u′(0) as functions of α, for various solid fractions and
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Figure 9. Triangular array of cylinders. Evolution of the dimensionless function r with the solid
fraction c and for various power-law exponents n. The continuous line is the prediction given by
(50) with ψ = 0.65.

power-law exponents. Several comments can be formulated from these figures. They are
listed in the following.

(a) For n 	= 1, figures 10 and 11 clearly reveal (i) that the macroscopic velocity field is not
aligned with the macroscopic pressure gradient, except when α = κπ/λ and (ii) that
the macroscopic flow law exhibits tetratropy in the case of square microstructures and
hexatropy for triangular ones:

∀α ∈ R, κ ∈ N,




β
(
α + 2κ

π

λ

)
= β(α),

u′
(
α + 2κ

π

λ

)
= u′(α),

v′
(
α + 2κ

π

λ

)
= v′(α).

(51)

Once again, this is directly connected to the invariance of the studied microstructures
through any rotation of angle 2κπ/λ.

(b) For n = 1, numerical results show (i) that 〈v(0)〉 is always aligned with p(0) and (ii) that
the macroscopic flow is isotropic, even if the microstructures studied exhibit tetratropy
(square) or hexatropy (triangular):

∀α ∈ R, κ ∈ N,




β(α) = β(0) = 0,

u′(α) = u′(0),

v′(α) = v′(0).

(52)
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Figure 10. Square array of cylinders. Evolutions of the normalized components u′(α)/u′(0)

(a)–(c), v′(α)/u′(0); (d)–(f) and of the angle β; (g)—(i) as functions of α, for various solid fractions
and power-law exponents. The bold dashed (n = 1.5) and continuous lines (n = 0.5) are the
prediction given by (54).

The last result can be proved theoretically considering both the invariance through any
rotation of angle 2κπ/λ and the weak formulation (23) deduced from the homogenization
process, that shows that 〈v(0)〉 is a linear function of ∇p(0) (see appendix).

(c) The signs of the deviations �β(α) = β(α) − β(0), �u′(α) = u′(α) − u′(0) and
�v′(α) = v′(α) − v′(0) always differ as the fluid is shear thinning (n < 1) or shear
thickening (n > 1).

(d) Comparing, respectively, figures 10(a), (d) and (g) with figures 10(b), (e) and (h) one can
see that the signs of �β, �u′ and �v′ when n 	= 1 can also change with the solid fraction.

(e) At a given solid fraction and power-law exponent n, the anisotropy of the
square arrangements is more pronounced than that of the triangular ones. The maximal
deviations |�β|max, |�u′|max and |�v′|max are systematically larger in the case of the
square microstructures.

(f) The lower the solid fraction, the less pronounced the anisotropy; |�β|max, |�u′|max and
|�v′|max tend to 0 as c → 0.
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3.6. Discussion

Numerical results obtained in the two previous subsections have underlined the strong and
coupled influence on the macroscopic flow response of the fluid rheology and of the geometry
of the microstructures. If analytical macroscopic expressions can account for such complex
flow in the case of on-axis situations (see section 3.4, [25]), little has been done in the case
of off-axis situations. For instance, it is of interest to see if off-axis macroscopic flows can be
easily deduced from on-axis flows in the e1 and e2 directions. Based on simulation results of
the flow of power-law fluid through square arrays of circular [28] and elliptic [29] inclusions,
Woods et al [29] have recently tried to do so. For this purpose, the authors proposed a simple
form of the macroscopic flow law expressed in the (e1, e2) reference frame. In the case of
circular inclusions, this law becomes

∇p(0) = − µ0

k∗a2

(( |u|
a

)n−1

ue1 +

( |v|
a

)n−1

ve2

)
. (53)
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Note that this relation is a particular case of equation (42) with k∗
1(c, n, α + β)∗ = k∗

2(c, n,

α + β) = k∗(c, n). This macroscopic model brings up the following comments:

• At the macroscopic scale, equation (53) suggests that a macroscopic velocity field 〈v(0)〉 =
ue1 + ve2 resulting from an imposed pressure gradient ∇p(0) = cos(α)e1 + sin(α)e2 is
the summation of 〈v(0)

1 〉 = ue1 and 〈v(0)
2 〉 = ve2, respectively, resulting from on-axis

imposed pressure gradients cos(α)e1 and sin(α)e2. Furthermore, from (40), (41) and
(53), it can be easily shown that the angle β between the macroscopic velocity field and
the macroscopic imposed pressure gradient is in the form,

β = arctan
[
[tan α]1/n

] − α. (54)

According to (54), angle β does not depend on the solid fraction c. As shown in figure 10,
if (54) fairly well reproduces numerical experiments at solid fractions close to cmax, the
lower the solid fraction, the larger is the deviation of (54) from the simulation.

• At the microscopic scale, equation (53) also suggests that the local velocity field v(0)

resulting from an imposed pressure gradient ∇p(0) = cos(α)e1 + sin(α)e2 is also the
summation of v

(0)
1 and v

(0)
2 resulting from on-axis imposed pressure gradients cos(α)e1

and sin(α)e2, respectively. In order to check the validity of such an assumption, different
numerical simulations were achieved with a shear thinning fluid (n = 0.5) and with
two square microstructures with a solid volume fraction c = 0.1 (i.e. rather low) and
0.7 (i.e. close to cmax), respectively. Figures 12(a)–(d) show the local velocity field v(0)

(arrows) and its corresponding local shear stress τ = µ0(γ
(0)
eq )n (colour map) computed

by following two different ways. Figures 12(a) and (c) show the above fields computed
with an imposed gradient of pressure ∇p(0) = cos(π/8)e1 + sin(π/8)e2. Figures 12(b)
and (d) show now the same fields obtained by summing the results of two different
simulations performed with imposed gradients of pressure ∇p(0) = cos(π/8)e1 and
∇p(0) = sin(π/8)e2, respectively. In this later case, we have v(0) = v

(0)
1 + v

(0)
2 . At high

solid fraction, figures 12(a) and (b) show a fairly good correlation between the numerical
experiments obtained by the two different ways: the local velocities and the shear stress
patterns are almost identical. This reinforces the validation of (53) for square arrays of
circular inclusions at high solid fraction. Such a good comparison is mainly due to the fact
that the main sheared zones are concentrated in the small gaps between the inclusions and
do not interact together. At low solid fraction, this reasoning breaks down, as it becomes
evident by comparing figures 12(c) and (d); a significant difference is observed on the
local velocity field as well as on the local shear stress state. This points out that the form
of (53) is not valuable to describe flows at mild or low solid fractions. Similar conclusions
have been obtained with a shear thickening fluid (n > 1).

4. Conclusion

In this work, a rigorous upscaling technique was used to derive the general structure and
properties of the flow law of a power-law fluid through an anisotropic fibrous medium.
In particular, it was proved without prerequisites at the macroscopic scale that the macroscopic
pressure gradient was an anisotropic homogeneous function of degree n of the macroscopic
velocity field, n being the power law exponent of the flowing fluid.

It is possible to explore quantitatively the as-derived flow law by solving numerically the
REV boundary-value problems directly deduced from the upscaling process. In this paper,
such a methodology was illustrated and applied on two very simple types of two-dimensional
anisotropic porous media, i.e. square or triangular arrays of circular solid inclusions.
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Figure 12. Flow of a shear thinning fluid (µ0 = 1 Pa s, n = 0.5) through a square array of
circular solid inclusions (l = 1 m, c = 0.7 (a) and (b) and c = 0.1 (c) and (d)). Representation
of the local velocity field v(0) (arrows) and its corresponding local shear stress τ = µ0(γ

(0)
eq )n

(colour map) computed by following two different ways: results in (a) and (c) were computed with
an imposed gradient of pressure ∇p(0) = cos(π/8)e1 + sin(π/8)e2. Results in (b) and (d) are
the sum of the results of two different simulations performed with imposed gradients of pressure
∇p(0) = cos(π/8)e1 and ∇p(0) = sin(π/8)e2, respectively. The linear colour scale used for the
shear stress τ ranges from 0 (blue) to τmax (red).

When it was possible, numerical results were successfully compared with those reported
in the literature, thus, validating the present methodology. Results have also underlined the
significant role of the solid fraction, the fluid rheology and the porous media anisotropy on the
resulting macroscopic flow law. Likewise, if simulated on-axis flows were successfully fitted
with analytical or phenomenological continuous expressions proposed in the literature, it has
been shown that further effort would be required to perform similar fits with simulated off-axis
flows.

Future planned works will: (i) propose some guidelines to establish and fit a suitable
tensorial form of macroscopic flow law for a given fibrous medium and (ii) apply the whole
methodology to more complex fibrous media.

Appendix

As an example, we now consider a square array of cylinder with circular cross-section.
The cylinder axes are in the direction e3. The porous medium can be considered as an
orthotropic medium with privileged directions e1, e2, e3, with a flow law that is invariant
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through any rotation of angle π/2 around e3. Assuming that the flow is perpendicular to the
square array of cylinders, ∇p(0) = (∇1p

(0), ∇2p
(0), 0), the flow law (35) reduces to

∇p(0) = −µ0

l2


 1

k∗
1

(
|〈v(0)

1 〉|
l

)n−1

〈v(0)
1 〉e1 +

1

k∗
2

(
|〈v(0)

2 〉|
l

)n−1

〈v(0)
2 〉e2


 , (A1)

where,

k∗
1 = k∗

1

(
c, n,

∣∣∣∣∣ 〈v
(0)
2 〉

〈v(0)
1 〉

∣∣∣∣∣
)

, (A2)

k∗
2 = k∗

2

(
c, n,

∣∣∣∣∣ 〈v
(0)
1 〉

〈v(0)
2 〉

∣∣∣∣∣
)

. (A3)

The velocity 〈v(0)〉 = (〈v(0)
1 〉, 〈v(0)

2 〉, 0) causes the gradient of pressure ∇p(0) =
(∇1p

(0), ∇2p
(0), 0). Due to the symmetry shown by the array of circular cylinders, the

flow law is invariant through any rotation of angle π/2 around e3. Therefore, a velocity
〈v(0)〉 = (−〈v(0)

2 〉, 〈v(0)
1 〉, 0) causes a macroscopic gradient ∇p(0) = (−∇2p

(0), ∇1p
(0), 0).

Thus, from (A1) we get,

k∗
1

(
c, n,

∣∣∣∣∣ 〈v
(0)
2 〉

〈v(0)
1 〉

∣∣∣∣∣
)

= k∗
2

(
c, n,

∣∣∣∣∣ 〈v
(0)
2 〉

〈v(0)
1 〉

∣∣∣∣∣
)

(A4)

or

k∗
1(c, n, X) = k∗

2

(
c, n,

1

X

)
with X =

∣∣∣∣∣ 〈v
(0)
2 〉

〈v(0)
1 〉

∣∣∣∣∣ . (A5)

This last relation characterizes the most general form of the flow law across the array of
cylinder. The macroscopic velocity is colinear to the gradient of pressure when this gradient
of pressure is parallel to the four axes of symmetry e1, e2, e1 + e2 and e1 − e2. For other
directions, the velocity is no more colinear to the gradient of pressure. Velocity ‖〈v(0)〉‖ is a
periodic function of α = (e1, ∇p(0)), of period π/2. This periodicity characterizes the two-
dimensional tetratropy of the flow law through the isotropic porous medium in consideration.
Finally, in the case where n = 1, the relation (A1) becomes isotropic (k∗

1 = k∗
2 = k∗(c)),

∇p(0) = − µ0

k∗l2
(〈v(0)

1 〉e1 + 〈v(0)
2 〉e2). (A6)

Following the same reasoning, similar results can be obtained for the triangular
microstructure: the macroscopic velocity is colinear to the gradient of pressure only when
this gradient of pressure is parallel to the six axes of symmetry, when n 	= 1 the flow law
exhibits hexatropy and when n = 1, the flow law is isotropic.
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