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A B S T R A C T   

Short-fibre reinforced polymer composites are increasingly used as structural or functional components in many 
engineering fields. To obtain high-performance composite materials, the polymer matrices are reinforced with 
high fibre contents (>20–50 wt%). Hence, during their forming, the composites behave as concentrated fibre 
suspensions that exhibit a non-Newtonian rheology. In addition, their end-use properties depend on the fibre 
orientation which drastically evolves during the forming operations. Within this context, it is crucial to analyse 
the induced microstructure changes in flowing concentrated fibre suspensions. For that purpose, 3D in situ 
compression experiments were performed on model non-Newtonian concentrated fibre suspensions that were 
imaged using fast X-ray synchrotron microtomography. At the fibre scale, large fluctuations in the translation 
and rotation of the fibres were observed during compression. These fluctuations were shown to be on the same 
order of magnitude than the mean fields. They can be attributed to long-range hydrodynamic interactions be-
tween neighbouring fibres as well as to short-range interactions induced by the numerous fibre-fibre contacts 
which practically follow trends predicted by the tube model. Surprisingly, in spite of the chaotic kinematics of 
the fibres, the macroscopic deformation of the suspension was homogeneous and the flow-induced evolution of 
fibre orientation was found to be well described by the averaged Jeffery’s equation (related to the second order 
orientation tensor).   

1. Introduction 

Owing to their interesting mechanical and physical properties, short- 
fibre reinforced polymer composites are increasingly used as structural 
and/or functional components in many engineering fields. These com-
posite parts are usually fabricated using cost-efficient forming processes 
such as injection and compression moulding [1–3]. A wide range of 
composite materials with tailored physical and mechanical properties 
can be designed by combining various types of fibrous reinforcements 
made of synthetic (e.g., carbon, glass, etc.) or natural (e.g., annual plant 
fibres such as flax and hemp fibres) fibres with varied morphology 
(shape, aspect ratio) with thermoplastic or thermoset polymer matrices. 
Short-fibre reinforced polymer composites with high fibre contents 
(>20–50 wt%) are used as structural parts adapted for 
high-performance applications (e.g., for the energy and transport 

industries) [4]. Hence, during their forming, these composites behave as 
concentrated fibre suspensions with a non-Newtonian rheology [1,5–8]. 
In addition, their fibrous microstructures undergo large flow-induced 
restructurations that affect the end-use properties of the produced 
parts. However, these phenomena are still not well characterised and 
modelled because of experimental challenges related to the fibre scale 
observation and analysis of evolving fibrous microstructures and flow 
mechanisms in non-Newtonian suspending polymer matrices. 

Fibres are commonly characterised using several geometric de-
scriptors, namely the fibre aspect ratio β = l/d (where l and d are the 
length and diameter of the fibre, respectively) and its orientation 
through the unit tangent vector pi = sinθicosφi e1 + sinθisinφi e2 +

cosθie3 associated to the fibre main direction, as depicted in Fig. 1: 
The study of fibre kinematics was initiated by Jeffery [9] who 

determined the motion of an ellipsoidal particle immersed in a linear 
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and infinite laminar flow field of an incompressible Newtonian fluid. 
The Jeffery’s theory also assumes that the velocity vi of the centre of 
mass of an ellipsoid i is an affine function of the macroscale velocity 
gradient ∇v of the suspending fluid. Hence, for homogenous macroscale 
fluid flow situations without rigid body motions, the position xi of the 
centre of mass of an ellipsoid i can be predicted by integrating the 
ellipsoid velocity vi =∇v⋅xi. In addition, using the first expansion of the 
fluid velocity field around the particle, the evolution of the ellipsoid 
orientation can be predicted from the well-known Jeffery’s equation, 
which describes the rate of the unit tangent vector pi: 

p⋅ i = Ω⋅pi + λb(D⋅pi − (pi⋅D⋅pi)pi) (1)  

where Ω = (∇v − t∇v)/2 and D = (∇v +t∇v)/2) are the macroscale 
vorticity and strain rate tensors, respectively, and λb is the effective 
shape factor that can be written as λb = 1 −

16.35lnβ
4πβ2 for straight cylin-

drical fibres with aspect ratio β = l/d [10]. The validity of Jeffery’s 
theory was reported by numerous authors [11–14] and extended to any 
asymmetrical particles by Bretherton [15]. Many rheological models 
that account for the kinematics of fibres in polymer composites during 
their forming are based on Jeffery’s theory [9]. For these situations, a 
compact description of the orientation of a collection of fibres is often 
achieved by computing the fibre orientation distribution function ψ or 
its moments such as the second A and fourth order A orientation tensors, 
respectively [16]. 

The predictions of Jeffery’s model have been validated [14,17–19] to 
deal with the fibre kinematics in dilute Newtonian fibre suspensions, 
where the fibre volume fraction is ϕ≪1/β2 and the average distance 
between neighbouring fibres is larger than the fibre length l. When the 
fibre concentration is increased to the semi-dilute regime, defined as 1 /
β2≪ϕ≪1/β, the fibre kinematics is affected by the presence of neigh-
bouring fibres. In this regime, the average distance between fibres 
ranges between one fibre length and one fibre diameter. Thus, fibre-fibre 
interactions can occur, especially long-range hydrodynamic interactions 
[18,20,21]. In that case, the presence of a fibre within the suspension 
disturbs the fluid flow, which affects the kinematics of fibres that are in 
its vicinity. The theoretical estimation of the fibre orientation distur-
bance induced by long-range hydrodynamic interactions was studied 
using slender body theory for extensional [18,22] and squeeze flows 
[21,23]. These studies showed an increase in this disturbance with the 
increase in fibre concentration. However, this effect was limited by 
short-range particle screening effects due to multiple interactions that 
occur with the surrounding fibres (the neighbouring fibres playing a role 
like a cage) [24,25]. When the fibre concentration is above ϕ > 1 /β, the 
concentrated regime is reached. Short-range interactions induced by 
fibre-fibre contacts have a predominant effect on the misalignment of 
fibre trajectories from Jeffery’s predictions [7,26–29]. Thus, for the 

semi-dilute regime, several modifications of Eq. (1) have been proposed 
in the literature based on the following phenomenological approach of 
Folgar and Tucker [30,31]: 

Ȧ = (Ω⋅A − A⋅Ω) + λb(D⋅A+A⋅D − 2A : D) + 2CI |γ̇|(δ − αA) (2)  

where δ is the identity tensor, |γ̇| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D : D

√
corresponds to the magni-

tude of the generalised strain rate, CI is the (isotropic) orientation 
diffusivity and with α = 2 in two dimensions and 3 in three dimensions. 
Several expressions of the orientation diffusivity CI have been proposed, 
leading to isotropic scalar functions of the fibre concentration and fibre 
geometry [32,33] or more complex expressions including anisotropic 
tensorial expressions of the orientation diffusivity [34–36]. Solving Eq. 
(2) requires the expression of the fourth-order orientation tensor A 

which is constructed from a closure approximation from the 
second-order orientation tensor A [16,29,37–41]. 

Jeffery’s theory was established to describe the fibre kinematics for 
flow situations with a good scale separation, meaning that the fibre 
length should be small compared to the typical dimensions of the flow. 
However, considering the typical dimensions of the mould gaps, this 
restrictive condition scarcely occurs during composite forming. Hence, 
in most situations, the scale separation is low and the flow of short-fibre 
composites has to be considered as confined [42–44]. Deviations from 
Jeffery’s orbits for fibres in the vicinity of the mould walls or rheometer 
platens were reported by several authors for particles in suspension in 
Newtonian fluids [45–47], or non-Newtonian fluids [48–50]. Only few 
studies described the effects of fibre-mould mechanical interactions on 
the fibre kinematics by proposing a direct modification of Jeffery’s 
model [51] or using a modified dumbbell approach [52,49]. 

Considering the complex rheology of polymer composites, several 
authors also studied the kinematics of single ellipsoidal particles 
immersed in viscoelastic fluids and subjected to shear flow [53–61]. 
Deviations from the Jeffery’s orbits were observed, showing bistable 
particle orientations related to the fluid elasticity. However, only a few 
experimental and theoretical studies accounted for the shear-thinning 
behaviour of the suspending fluids or elongational flow situations [26, 
19], although these fluids and flow conditions are commonly encoun-
tered in short fibre-reinforced polymer composites. In a previous study 
[48], the authors showed that during the compression of dilute sus-
pensions with non-Newtonian shear-thinning power-law fluids (n =
0.2), the fibre kinematics were not affected by the fluid rheology and 
were well described by Jeffery’s equation (Eq. (1)) for non-confined 
flows. These experimental results were in accordance with theoretical 
and numerical models [49]. 

Owing to the difficulty to observe and characterise in 3D the evo-
lution of the fibrous microstructures during the flow of fibre suspen-
sions, the complex flow mechanisms induced at the fibre scale still 
remain not well understood. Most of the experimental observations of 
fibre suspensions were performed using 2D optical techniques [11,12, 
17,62,63], 2D wide-angle X-ray diffraction [64], high speed X-rays 
phase-contrast 2D imaging [19] and video camera with isorefractive 
systems [14,18,21]. These techniques work well for studying dilute 
suspensions. However, they are inappropriate for the characterisation of 
semi-dilute and concentrated fibre suspensions. In previous studies [48, 
49], 3D in situ and real time observations of non-Newtonian shear--
thinning dilute and semi-dilute fibre suspensions (ϕ≪1 /β2) subjected to 
lubricated compression experiments were performed using 3D X-ray 
synchrotron images. Despite the non-Newtonian fluid behaviour and 
regardless of the investigated experimental conditions (fibre aspect ratio 
and orientation), Jeffery’s theory was also found to be efficient for 
predicting fibre kinematics when fibres were far enough from 
compression platens (around 3 times a fibre diameter). Deviations from 
the affine motion of the fibre centres of mass were also observed 
experimentally but were not predicted by the simulation. The potential 
origins of these deviations were attributed to unexpected rigid body 
motions of the compressed sample or fluid viscoelastic effects. 

Fig. 1. Coordinate system and definition of fibre descriptors. Note that θi ∈

[0, π] and φi ∈ [0, 2π]. 
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Confinement effects were also observed experimentally and numerically 
on the translation and rotation when fibres entered in contact with the 
compression platens. 

In this context, the objective of this study was to investigate fibre 
scale flow-induced microstructure changes occurring in concentrated 
fibre suspensions with non-Newtonian suspending fluid subjected to 
confined elongational flows. Hence, using a similar procedure to that 
previously reported in [48,49], model concentrated non-Newtonian 
fibre suspensions were prepared and compressed using a 
micro-rheometer that was installed in a synchrotron X-ray microtomo-
graph. 3D in situ and real time observations of the evolving fibrous 
microstructure were then performed during sample compression. The 
analysis of the 3D images acquired during these experiments revealed 
for the first time translation and rotation motions of the fibres during 
plane strain compression of a concentrated fibre suspension. The kine-
matics of fibres in concentrated fibre suspensions were compared with 
the predictions of Jeffery’s model. 

2. Experimental procedure 

2.1. Materials 

A hydrocarbon gel was used as suspending fluid [6]. At a tempera-
ture of 120 ◦C the gel behaved as a Newtonian fluid and its shear vis-
cosity was approximately 1 Pa s. At room temperature, the gel was solid 
which enabled the fibrous microstructure to be “frozen” and facilitated 
the handling of the suspension. At a temperature of 50 ◦C, the gel 
exhibited a non-Newtonian behaviour close to that of industrial polymer 
matrices used in composites. The gel viscosity in shear could be 
modelled as a shear-thinning fluid of power law type, i.e., ηm = K|γ̇|n− 1 

with a consistency K = 440 Pa.sn and a power-law index n = 0.2. The 
parameters K and n were determined using classical rheometry experi-
ments (Anton Paar MCR301 rheometer equipped with a cone-plane 
geometry). 

Short fibres used in the model suspensions were obtained from 
continuous elastic fishing wire (diameter d = 200 µm, length l = 1500 
µm, i.e., β = 7.5, Young’s modulus E = 2 GPa). Model concentrated 
fibre suspensions with 3D random fibre orientation were prepared 
manually using an experimental procedure that slightly differed from 
that already reported by Laurencin et al. [48]. Briefly, this procedure 
consisted in projecting fibres inside the cavity of a mould. This allowed 
obtaining a fibre mat with a fibre orientation comprised between a 2D 
in-plane random fibre orientation and a 3D one. Then this fibre mat was 
impregnated by the hydrocarbon gel heated at 120 ◦C and subjected to 
vibration to remove the air bubbles that could possibly be entrapped. 
Finally the as-obtained suspensions were cooled down to ambient tem-
perature. To determine the fibre volume fraction ϕ (and thus the total 
number of fibres N) required to obtained fibre suspensions in the 
concentrated regime, i.e., suspensions with a mean coordination number 
z (mean number of fibre-fibre contacts per fibre), greater than 1, we used 
the statistical tube model [65] the estimates of which for these types of 

fibrous media were shown to be relevant [6,66]: 

z = 4ϕ
(

2
π βΦ1 +Φ2 + 1

)

(3)  

where the orientation functions Φ1 and Φ2 can be estimated from the 
knowledge of the tangent unit vectors pi and the total number N of fibres 
as follows: 

Φ1 =
1

N2

∑N

i=1

∑N

j=1
‖pi × pj‖ and Φ2 =

1
N2

∑N

i=1

∑N

j=1

⃒
⃒pi⋅pj

⃒
⃒ (4) 

Note that Φ1 = π/4 and Φ2 = 1/2 for fibrous structures with a 3D 
random fibre orientation [65]. 

Following this procedure, several cuboids (in-plane dimensions w0 ×

w0 = 8 × 8 mm2 and height h0 = 2.2 mm) with ϕ = 40% (or 
conversely N = 2770) were obtained. 

2.2. Plane strain compression experiments with real-time 3D in situ X-ray 
imaging 

Samples were subjected to lubricated plane strain compression 
loading at a temperature of 50 ◦C using a specific micro-rheometer [48, 
49,67]. The micro-rheometer was mounted on the rotation stage of a 
synchrotron X-ray microtomograph (TOMCAT beamline, Swiss Light 
Source, Paul Scherrer Institute, Villigen, Switzerland) which enabled 3D 
in situ images of the evolving fibrous microstructure to be acquired in 
real-time conditions. To maintain the fibre suspension at a constant 
temperature of 50 ◦C, heaters and thermocouples were inserted inside 
the compression platens. Before compression, the platens were lubri-
cated with silicone oil (47 V1000–80,026, Chimie-Plus Laboratoires), 
and the suspensions were subjected to a small pre-compression to ensure 
a good mechanical contact. After a stress relaxation and temperature 
homogenisation (~10 min) the mechanical loading was applied 
continuously through a piezoelectric actuator attached to the lower 
compression platen. Plane strain compression experiments were per-
formed at a constant velocity ḣ = 11 µm s− 1 of the lower platen, cor-
responding to an initial strain rate D33 = ḣ/h0 = 0.005 s− 1 along 
the e3-direction. A load cell of 5 N was also placed under the upper 
compression platen and used to measure precisely the axial force F 
exerted on the sample in the e3-direction. Then, by assuming the sus-
pension incompressibility, the axial compression stress σ33 = |F|h/
(h0w2

0) was plotted as a function of the axial compression Hencky strain 
|ε33| = |ln(h /h0)| (up to 0.5). Note that the suspension flow was 
considered to be confined because of the poor scale separation, i.e., l/
h = O (1). To acquire 3D X-ray microtomography images of the sus-
pension during compression, the X-ray energy and the number of ra-
diographs (dimensions of the images: 1776 × 1776 pixels) were set to 
20 keV and 600, respectively. The scan duration was 0.42 s. 3D images 
of the scanned specimen with a size of 1776 × 1776 × 450 voxels for a 
voxel size of 11 × 11 × 11 µm3 were obtained using the phase-contrast 
Paganin reconstruction mode [68,69] and suitable reconstruction 

Fig. 2. Illustration of the procedure used to individualise each fibre. (a) Initial 3D image of a concentrated fibre suspension segmented on the fibre phase. (b) Same 
3D image obtained after segmentation on the Euclidean distance map calculated on the fibre phase and (c) after skeletonisation and smoothing of fibre centrelines. 
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algorithms. 

2.3. Image analysis and data post-treatment 

To detect and quantitatively follow the evolution of the fibrous 
microstructure during lubricated plane strain compression, several 
image analysis operations were performed following the methodology 
reported by Latil et al. [67]. After a segmentation step of images on the 

fibrous phase (Fig. 2a), the numerous contacts between fibres did not 
enable each fibre to be clearly distinguished. To individualise the fibres, 
a 3D distance analysis between the two phases (i.e., fibre and fluid) was 
applied (Fig. 2b). This stage consisted in calculating the distance of each 
voxel of the fibrous phase with the fluid phase and attributing a new 
grey level value to the considered voxel. Then, the as-obtained 3D 
Euclidian distance map was segmented. This operation enabled the 
removal of all the fibre-fibre contacts by reducing the fibre diameter. 
The fibre centrelines were extracted using a skeletonisation algorithm 
[70], namely the distance ordered homotopic thinning algorithm 
implemented in Avizo software (Fig. 2c). 

The centreline of each fibre i was smoothed and fitted using a linear 
parametric curve with coordinate xi(s) along the curvilinear abscissa s of 
the considered fibre i. Then, a local Frenet basis was associated to each 
coordinate xi(s), using the procedure reported in [67,71]. In this local 
basis, ti is the unit tangent vector, ni and bi are the unit normal and 
binormal vectors, respectively. Hence, the set (xi, ti, ni,bi) enabled the 
description of the local geometry of the fibres, their orientation (pi 
corresponds to the average of all unit vectors ti along the curvilinear 
abscissa s of the fibre i), and the orientation and position of each 
fibre-fibre contact. 

The set C of fibre-fibre contacts was extracted from the 3D images 
using the procedure reported in [66,67]. This procedure was based on 
the calculations of the distances between the fibre centrelines. A 
fibre–fibre contact was detected when the local distance between two 
neighbouring fibre centrelines was less than or equal to a fibre diameter 
d. Hence, it was possible to estimate the mean coordination numbers z in 
the studied suspensions for each compression stage. In addition, the unit 
normal vector cα of each contact α (1 ≤ α ≤ C) between two contacting 
fibres i and j was calculated as follows: cα = pi × pj. 

Doing so, it was also possible to analyse the overall orientation of 
fibres and fibre-fibre contacts by using deterministic estimates of the 
second A and the fourth A order fibre orientation tensors [6,67]: 

A =
1
N

∑N

i=1
pi ⊗ pi and A =

1
N

∑N

i=1
pi ⊗ pi ⊗ pi ⊗ pi (5) 

Fig. 3. Plane strain compression of a model concentrated suspension containing 2770 fibres (ϕ = 40%). The graph shows the evolution of the compression stress σ33 

measured along the e3 axis as a function of the compression strain |ε33|. 3D images numbered from 1 to 4 show the evolution of the fibre microstructure during 
lubricated plane strain compression. Numbers on the curves show the corresponding stress and strain states to these images. 

Fig. 4. Evolution with the fibre content ϕ of the dimensionless compression 
stress σ∗

33 for various model fibre suspensions (β = 7.5) that were prepared 
following the procedure described in Section 2.1. 
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and the second order orientation contact tensor C [6,7,29,67,72,73]: 

C =
1
C

∑C

α=1
cα ⊗ cα (6) 

In addition, fibre positions, orientations and fibre-fibre contacts were 
tracked between each compression step. The rigid motion of fibres was 
followed using a fibre centreline tracking algorithm based on a corre-
lation distance function [74]. Briefly, the principle of the correlation 
method consists in recognizing the fibre i from a so-called initial 
configuration of the fibre suspension at time t among the N fibres j of a 
so-called deformed configuration of the suspension at time t + dt. This 
method relies on the minimisation of the following discrete correlation 
function Mij defined as follows: 

Mij =
∑N

i

∑N

j

∑

k
‖ xt

i(sk) − xt+dt
j (sk) ‖ (7) 

For each couple (i, j), the function Mij represents the inter-fibre dis-
tance calculated from the spatial coordinates xt

i(sk) and xt+dt
j (sk) along 

the curvilinear abscissa sk of the fibre centrelines. Minimising this 
function Mij enables finding for each fibre i its corresponding fibre j. The 

validity of each fibre association is checked by using again the correla-
tion technique to recognize each fibre j at time t+ dt among the N fibres i 
at time t. The correlation is validated if the couples (i, j) of associated 
fibres obtained from both minimisation processes are identical. 

The relevance of Jeffery’s model was assessed by testing the validity 
of the affine assumption (i.e., vJeff

i = ∇v⋅xJeff
i ), and the orientation 

equation (Eq. (1)) for the predictions of the position of the centre of mass 
xJeff

i and the orientation vector pJeff
i of each fibre i of the model suspen-

sions. These equations were numerically solved using a fourth order 
Runge-Kutta integration scheme implemented in Matlab. Previous 
measurements made on dilute fibre suspensions [48] revealed that the 
macroscale suspension flow was homogeneous, incompressible (∇⋅v =

0) and irrotational (Ω = 0). Therefore, the strain rate tensor D was 
estimated from the height of the suspension h measured using the 3D 
images with an error of ±1 voxel. The initial positions x0

i and the initial 
orientation vectors p0

i were taken from the initial undeformed config-
uration of the suspension measured on the 3D images, with maximum 
errors of ±1 voxel and ±0.15◦, respectively. Then, two thousand in-
tegrations per experiment were computed using errors associated with h, 
x0

i and p0
i that were randomly chosen within the aforementioned ranges. 

Hence, the errors on the corresponding integrated parameters could be 

Fig. 5. (a) Evolution of the diagonal components Aii of the measured second-order fibre orientation tensor A with the sample compression strain |ε33|. The continuous 
lines represent the predictions of the calculated second order orientation tensor AJeff

ii . (b) Evolution of the diagonal components Cii of the second order orientation 
contact tensor C with the sample compression strain |ε33|. (c) Evolution of the mean coordination number z with the sample compression strain |ε33|. The blue and red 
curves represent the mean coordination number z that was directly measured from the 3D images shown in Fig. 3 and that predicted by the statistical tube model (Eq. 
(3)), respectively. 
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estimated. The errors were considered to correspond to the difference 
between the 2nd and 98th percentile values of the computed distribu-
tions. Finally, the calculated orientation vectors pJeff

i from the integra-
tion of Eq. (1) enabled the second order fibre orientation tensor AJeff to 
be directly calculated again from Eq. (5). The as-calculated tensor AJeff 

could be compared to the tensor A measured from the 3D images. 

3. Results and discussion 

3.1. Flow mechanisms at the sample scale 

Fig. 3 shows the typical evolution of the stress σ33 measured along 
the e3 axis during the plane strain compression of a model concentrated 
fibre suspension. 3D views of the fibrous structure obtained at various 
strain |ε33| are also shown in this figure. The compression curves of 
concentrated fibre suspensions exhibit two regimes: a first regime where 
the stress increases non-linearly up to a flow stress σ33 ≈ 2.3 ×104 Pa 
followed by a plateau-like regime. Note that in these flow conditions, the 
contribution of the suspending fluid scales as 295 Pa which demon-
strates the crucial of fibres on the rheology of the studied suspensions. In 
the same time, the 3D images reveal that the fibre microstructure is 
compressed along the e3 axis but also flows along the channel’s axis in 
the e2 direction. At the macroscale, the flow of the suspension is ho-
mogeneous and corresponds to an incompressible plug-like flow without 
any phase separation between the fibres and the polymer matrix. This 
tends to show that despite the high concentration of the suspension, the 
entanglement of the fibrous network is sufficiently low to enable the 
fibres to move relatively to each other under the applied compression 
stress. 

Fig. 4 shows the evolution with ϕ of the dimensionless compression 
stress σ∗

33 = σ33(ϕ)/σ33(ϕ = 0), where σ33(ϕ) and σ33(ϕ= 0) are the 
axial compression stresses of the fibre suspension and the polymer ma-
trix, respectively, that were measured at a compression strain |ε33| =

0.3. For comparison purpose, we have also plotted the dimensionless 
compression stresses σ∗

33 obtained for various model fibre suspensions in 
the dilute and semi-dilute regimes prepared in the same conditions and 
with the same fibre aspect ratio β = 7.5 [48,49]. This shows that the 
compression stress required for the flow establishment of a concentrated 
fibre suspension (i.e., suspensions with ϕ = 0.4) is ten times higher than 
that measured for semi-dilute fibre suspensions. In addition, this figure 

emphasises the weak (resp. pronounced) effect of the compression strain 
rate D33 (resp. ϕ) on the dimensionless compression stress σ∗

33. 
The graphs in Figs. 5a,b show the evolution of the diagonal com-

ponents of A and C tensors. Note that it was checked that the diagonal 
components could reasonably be associated to the principal components 
of these two tensors. These graphs reveal that the fibre orientation of the 
initial suspension exhibited a 3D transverse isotropy 
(i.e., A11 ∼ A22 ∕= A33) with a high density of unit normal vectors cα of 
fibre-fibre contacts orientated along the e3 axis (i.e., C33 > C11 ≈ C22). 
These features were presumably inherited from the sample preparation 
since each fibre of the suspension was introduced into the suspending 
fluid from the top, along the e3 axis. The evolution of the diagonal 
components of A and C tensors with the compression strain |ε33|

revealed that the fibres tended to reorient along the channel’s axis e2. 
This is illustrated by the increase of the components A22 and C11 with the 
increase in the compression strain |ε33|. Then, it is interesting to notice 
that C33 did not evolve, proving that the density of unit normal vectors of 
fibre-fibre contacts remains almost the same. 

Fig. 5c shows the evolution of the mean coordination number z as a 
function of the sample compression strain |ε33|. The error bars shown in 
the graph correspond to an error of ±1 voxel that was related to the 
extraction procedure of the centerlines of each fibre of the suspension. 
This figure shows that the mean coordination number z was initially 
close to 2. This proves that the studied suspension was in the concen-
trated regime and that the fibres formed a connected network. In 
addition, this graph shows that z slightly decreased with increasing the 
compression strain |ε33|. This evolution could be related to the flow- 
induced orientation of fibres along the e1 axis. It is well-established 
[65,75,76] that the mean number of fibre-fibre contacts decreases as 
the fibres orientate along a preferred/principal direction. It is important 
to notice that this trend is also well reproduced by the statistical tube 
model [65] even if the theoretical predictions of z are slighly higher than 
the measurements. This results is in agreement with several observations 
made from 3D images of fibrous materials by Orgéas et al. [66] and 
Guiraud et al. [6]. 

3.2. Flow mechanisms at the fibre and fibre-fibre scale 

Using the correlation technique [74], it was also possible to analyse 
the flow mechanisms and the complex microstructure of fibre 

Fig. 6. (a–d) Left-hand side 3D images: identified fibre centrelines during the plane strain compression of a concentrated fibre suspension at various compression 
strains |ε33|. (a–d) Right-hand side images: zoomed views in the core of the sample. These zoomed images show the evolution of the kinematics (positions and 
orientations) of nine fibres (represented by thick coloured lines) that were selected in the centre of the sample. The evolution of their discrete contacts with their 
neighbouring fibres (represented by thin grey lines) is also shown and represented by red dots. 
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suspensions under flow at the fibre and contact scale. In particular, it 
was possible to describe the kinematics of single fibres that could be 
recognised, identified and followed during plane strain compression 
(Fig. 6). 

The graph in Fig. 7a shows the performance of the used semi-discrete 
correlation procedure. This graph shows the evolution during a plane 
compression experiment of the percentage of good fibre associations 
obtained by correlation between discretised 3D images at a compression 
deformation state |ε33| and that at |ε33| + Δ|ε33|. Thanks to the recent 
progress offered by synchrotron radiation facilities, 3D high resolution 
images were obtained at a sufficiently high frequency, i.e., with defor-
mation increments between images Δ|ε33|< 0.03, thus leading to a high 
percentage (>90%) of fibre associations. Hence, as shown in Fig. 6, it 
was possible to track the positions and orientations of a selection of 
neighbouring fibres taken at the centre of the sample as well as the 
positions and the number of contacts between them. The 3D images on 
the left-hand side show all fibre centrelines and their evolution for 
various deformation state |ε33| of the sample subjected to plane strain 
compression. The images on the right-hand side are zoomed views in the 
core of the sample where the fibre centrelines of tracked fibres appear in 
the form of coloured thick lines and their discrete contacts with the 
neighbouring fibres (represented by thin grey lines) are symbolised by 
red dots (Fig. 6). 

The graph in Fig. 7b shows the evolution with |ε33| of the deviation 
Δxi = ‖ xi − xJeff

i ‖ of the experimental position of the fibre centres of 
mass xi with respect to xJeff

i of the nine tracked fibres. In addition, the two 
graphs c-d in Fig. 7 show the evolution of the orientation angles θi and φi 
of the nine tracked fibres as a function of the macroscopic compression 
strain |ε33|. For comparison purpose, the evolution of the orientation 
angles predicted by Jeffery’s model (continuous lines) are also plotted in 
this figure. These three graphs clearly illustrate the erratic motion of 
these fibres in their network. The graph b reveals that the translation 
motion of tracked fibres was different from that they should follow 
under the affine field assumption. These deviations are much more 
pronounced than those observed for dilute and semi-dilute fibre sus-
pensions [48,49]. As discussed in these previous studies, it is difficult to 
determine whether the general trend of the deviations had physical 
origins (e.g. small shear flow related to non-ideal lubrication conditions 
between the samples and the compression platens) or were induced by 
experimental artefacts (e.g. unexpected rigid body motions of samples). 
However, the evolution of Δxi of the analysed fibres also revealed that 
they were subjected to several events (related for instance to the loss or 
creation of fibre-fibre contacts) that induced pronounced and erratic 
variations in the position of their centres of mass. Some of these events 
are clearly visible for the blue fibres in the graph b of Fig. 7 (see the large 

Fig. 7. (a) Graph showing the percentage of fibre associations obtained using the semi-discrete correlation method of the fibre centrelines as a function of the sample 
deformation |ε33|. (b–d) Graphs showing the evolution of the deviations Δxi (b), angles θi (c) and φi (d) of nine tracked fibres taken in the centre of the sample as a 
function of the compression strain |ε33|. 
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variations in the positions of the blue points). Note also that all the 
analysed fibres from graph b were affected by this type of events. 

In addition, the graphs of Figs. 7c-d reveal that the rotation of each 
fibre was extremely erratic and showed large fluctuations, i.e., a 
behaviour far from that predicted by Jeffery’s equation (depicted by the 
continuous lines), as revealed by the fluctuations of the θi and φi angles 
measured during compression. The rotation of these fibres was pre-
sumably hindered by their contacts with their neighbouring fibres 
(zoomed views of Fig. 6). For the highest compression strain, almost all 
the fibres tended to align along the main flow direction (increase of θi 
and φi angles). However, some fibres exhibited an inverse trend, see for 
instance the yellow, green and red fibres. 

These results obtained in the core of the sample, i.e., in a zone far 
from the two platens, are different from those observed for dilute and 
semi-dilute fibre suspensions [48,49]. In the present case, the erratic 
translation and rotation motions of fibres were induced by the multiple 
interactions between fibres. However, in spite of the chaotic kinematics 
of individual fibres it is interesting and surprising to notice that the 
macroscopic deformation of the sample remained homogeneous and the 
overall fibre orientation of the suspension could be well predicted by the 
second order fibre orientation tensor AJeff (Fig. 5a). 

4. Conclusion 

The objective of this study was to observe and characterise at the 
fibre scale, the flow mechanisms occurring in concentrated fibre sus-
pensions. For that purpose, model concentrated fibre suspensions with a 
non-Newtonian suspending fluid and 3D random fibre orientations were 
prepared and deformed in confined flows by performing continuous 
tests with a compression rheometer that was installed on a synchrotron 
X-ray microtomograph. The image acquisition parameters enabled the 
acquisition of 3D images with high spatial resolution and short scanning 
time (i.e., less than 0.5 s). An image analysis procedure was specifically 
developed and enabled the extraction of several key microstructure 

descriptors such as the positions and orientations of fibres and their 
contacts. The evolution of these descriptors was followed using a semi- 
discrete correlation technique of the spatial positions of fibre centrelines 
[74]. 

These experiments enabled the 3D observation and characterisation 
of a confined plane strain compression test of a concentrated fibre sus-
pension. The quantitative analysis of the 3D images led to original re-
sults that clearly emphasised the complex kinematics of individual 
fibres. Large fluctuations in the translational and rotational fields of the 
fibres were observed during plane strain compression. These fluctua-
tions were shown to be on the same order of magnitude than the mean 
fields. The kinematics of fibres was found to be different from that 
observed for dilute and semi-dilute fibre suspensions under similar 
confined flow conditions [48,49]. We also observed that contacts be-
tween fibres induce locally very strong perturbations in the fibre motion, 
leading to fibres kinematics that are far from the affine field and local 
Jeffery’s equation predictions. This emphasises the central role played 
by the interactions between fibres on the rheology of these concentrated 
suspensions. 

Surprisingly, in spite of the chaotic kinematics of the fibres, the 
macroscopic deformation of the suspension was quasi homogeneous and 
the overall fibre orientation in the suspension was found to be well 
described by the second order orientation tensor estimated from the 
integration of Jeffery’s equation for each fibre of the suspension during 
compression. In addition, our results showed that the statistical tube 
model [65] was relevant to estimate the mean number of fibre-fibre 
contacts per fibre in concentrated fibre systems. The knowledge of the 
number of contacts is crucial to feed rheological models that enable 
estimating the predominant contribution of contacts to the overall stress 
field [7,29,72] within such systems. 

The experimental results obtained in this study are promising and 
would enable improving micromechanical models and upscaling ap-
proaches related to the rheology modelling of concentrated fibre sus-
pensions [7]. This approach would also enable an in-depth 
characterisation of the fibre mesostructures (fibre aggregates) present in 
these suspensions (Fig. 8). This would help understanding the complex 
micromechanics of these mesostructures and would help revealing the 
role they play on the rheology of concentrated fibre suspensions. 
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Fig. 8. 2D map showing the fibre density in the suspension (for a compression 
strain of |ε33| = 0.2) obtained thanks to the “Bivariate Kernel Density Esti-
mator” function implemented in Matlab from the fibre centrelines projected in 
the (e2, e3), (e1, e2) and (e1, e3) planes, respectively. These maps show the 
presence of fibre mesostructures or aggregates within the fibre suspension, in 
particular in the (e1, e2) plane. 
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[74] S. Le Corre, P. Latil, L. Orgéas, P.J.J. Dumont, S.R. du Roscoat, C. Geindreau, A 3D 
image analysis method for fibrous microstructures: discretization and fibers 
tracking, in: ECCM15 - 15th European Conference On Composite Materials, Venice, 
2012. 
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