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a b s t r a c t

The properties of short fibre-reinforced polymer composites depend on the distribution and the orientation of

fibres which drastically changes during the forming of composites. During this stage, these materials behave as

fibre suspensions and usually flow in confined geometries. To analyse their flow-induced fibrous microstructures,

we previously conducted 3D real-time in situ observations of the compression of non-Newtonian dilute fibre

suspensions using fast X-ray microtomography [T. Laurencin et al., Compos Sci Technol 134 (2016)]. Here, we

successfully simulated these experiments with a multi-domain Finite Element code and compared them with the

predictions of Jeffery’s model. Often, the Jeffery’s equations agree with the experimental and numerical data.

However, for fibres closed to compression platens, important deviations were observed with faster simulated and

experimental fibre rotation. Adopting the dumbbell approach and revisiting the recent work of Perez et al. [J

non-Newtonian Fluid Mech 233 (2016)], an extension of the Jeffery’s model is proposed to account both for the

non-Newtonian rheology of the suspending fluid and confinement effects. Despite its simplicity, the new model

allows a good description of simulation and experimental results.
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. Introduction

Knowing the distribution and the orientation in short fibre-
einforced polymer (nano)composites is essential to control their physi-
al and mechanical properties [1–3,57]. These materials have fibre vol-
me fractions 𝜙 that range from 0.005 to 0.5 and fibre aspect ratios
= 𝑙∕𝑑 from 5 to 1000 (d and l being the typical fibre diameter and

ength). During the forming stages, they behave as fibre suspensions
ith a complex rheology (in particular due to the non-Newtonian be-
aviour of the polymer matrices) and drastic flow-induced changes of
he distribution and the orientation of fibres. In practice, the suspension
sually flows occur in confined regions where the typical size h is of
he same order of magnitude as the size of the fibre length l, i.e., with a
onfinement parameter 𝐶∗ = ℎ∕𝑙 = (1) [4–6]. These confined flow sit-
ations conduct to interactions between fibres and solid boundaries that
lter the fibre kinematics. These effects should be considered to simulate
he processing of short fibre-reinforced polymer composites but are still
ot very well-understood or modelled, due to numerical or experimen-
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al difficulties to properly observe the evolving fibrous microstructures
nd to access to flow mechanisms at fibre scale.

Fibre kinematics under various flow have been widely studied start-
ng from the fundamental work of Jeffery [7] focused on the motion of
n ellipsoidal particle immersed in an incompressible Newtonian fluid
owing at low Reynolds number in an infinite domain. The theory as-
umes that the translation of the considered particle is an affine function
f the macroscale velocity gradient. In the case of a cylindrical fibre, the
volution of the unit tangent vector 𝐩 = 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝐞1 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 𝐞2 +
𝑜𝑠𝜃𝐞3, characterising the fibre orientation, can be predicted from its
ate �̇�, the macroscale vorticity tensor 𝛀 and the strain rate tensor D:

̇ = 𝛀.𝐩 + λ(𝐃.𝐩 − (𝐩.𝐃.𝐩)𝐩) with 𝜆 = 1 − 16.35 ln 𝛽
4π𝛽2

(1)

here 𝜆 is a shape factor expressed by Brenner for cylindrical fibres
8]. The relevance of Jeffery’s model was experimentally confirmed
y several authors [9–12], mostly under shear flow. Jeffery’s model
as largely been validated and used for dilute Newtonian fibre sus-
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Fig. 1. Multi-domain approach used with the immersed do-

main method to simulate the lubricated squeeze flow: subdo-

mains used to describe axisymmetric squeeze flows; each do-

main was assumed to be incompressible viscous body.
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ensions, i.e., when 𝜙≪1/𝛽2 [13–15]. The model was also enriched
or semi-dilute and Newtonian fibre suspensions (1/𝛽2≪𝜙≪1/𝛽) to
ake into account for long range hydrodynamic fibre interactions [16–
0]. In these approaches, the motions of the centres of mass of fibres
re still affine functions of the macroscale velocity gradients and the
bre rotations are restrained thanks to a diffusion-like term depend-

ng on the Fibre Orientation Distribution Function (FODF) added in the
ight hand-side of Eq. (1). In the concentrated regime, the as-modified
effery’s model fails due to short range interactions between fibres
hich play a central role on rheological behaviour of these suspensions

16,21–23].
The effects of the non-Newtonian rheology of the suspending fluid

n the kinematics of single ellipsoidal particle under simple shear flow
ave been studied only by a few authors [24–30,59]. For sheared vis-
oelastic fluids, experimental observations revealed a departure from
effery’s orbits with a bistability of particle orientation which depends
n the elasticity of the fluid. At low Deborah number, fibre aligns along
he vorticity direction [24–29], whereas increasing the Deborah number
eads to an orientation transition to the shear direction [27,28,30]. The-
retical studies using second order suspending fluids in the limit of low
eissenberg number were also developed by Leal [31] for the motion

f rod with a Rivlin-Ericksen fluid model, and Brunn [32] for the mo-
ion of transversely isotropic particle with a Giesekus fluid model. Also,
orzacchiello et al. [33] developed a simplified model by enriching the
elocity gradient with a first-order perturbation induced by the parti-
le and the non-Newtonian fluid (Giesekus fluid model in the limit of
ow Weissenberg number). Qualitatively, the predictions of the model
re in agreement with experimental observations [29] and direct nu-
erical simulations [34]. However, very few experimental, theoretical,

nd numerical studies focused on the strain-thinning behaviour of the
uspending fluid under compressive or elongational flow [15,21] de-
pite these features are commonly encountered in the processing of short
bre-reinforced polymer composites.

The aforementioned theories were established for a good scale sepa-
ation, i.e., when C∗≫1. Confinement effects occurring when 𝐶∗ = (1)
ave been much less analysed. Departures from Jeffery’s trajectories
nd orbits were reported for fibres that interacted with mould walls in
ewtonian [35–38] as well as non-Newtonian suspending fluids [39].
arious complex kinematics were observed such as “glancing” [38],
pole vaulting” [39] or “stabilizing effect” [37]. The influence on con-
nement on rheology of fiber suspensions is also studied for shear
nd elongational flows [57,58]. To the best of the authors’ knowledge,
nly a few authors modelled these effects. Using the heuristic dumb-
ell model, modifications of the Jeffery’s equations [57,40–42] were
roposed by considering physical contacts between rods and walls
hrough the introduction of a contact force ensuring wall impenetrabil-
ty. However, confinement effects have rarely been studied in the case
f non-Newtonian suspending fluids [39], and never for elongational
ows.

Within this context, we recently used real time and in situ syn-
hrotron X-ray microtomography to finely assess the 3D fibre kinemat-
cs in dilute suspensions with a strain- thinning fluid during confined
nd lubricated compression [43]. Results showed that power-law in-
ex and confinement had minor effects on fibre kinematics only if the
bre/fibre and fibre/wall distances remained sufficiently large (approx-

mately above twice the fibre diameter). Below, fibres exhibited no-
iceable departures from Jeffery’s predictions. In this paper, we model
hese experiments using both direct fibre scale numerical simulation
nd analytical predictions. Thus, after briefly recalling the used numer-
cal approach, we extend the analytical dumbbell approach to model
bre kinematics in (un)confined flows [41,42,44,45] for power law flu-

ds. Experiments that have motivated this work are briefly summarized.
heoretical, experimental and numerical results are then compared and
iscussed.

. Fibre suspensions in lubricated squeeze flow: methods

.1. Numerical approach

.1.1. Boundary values problem to be solved

We considered a cubic domain Ω composed of subdomains Ωj made
f N fibres i, the suspending fluid f, the air a and the compression
latens p (Fig. 1). Fibre suspensions were modelled as cylindrical sam-
les (height h and radius R) and located between two parallel rigid com-
ression platens (die and punch). Each fibre i with an orientation vector

i and a centre of mass Gi located at a position 𝐱𝐺𝑖 was placed inside
he suspending fluid. Compression flow was imposed with a zero stress
ector on the external boundaries of the domain Ω and with the mo-
ion of the upper platen at a velocity 𝐯(𝑥, 𝑦, ℎ) = (0, 0, ℎ̇) at a prescribed
ompression strain rate 𝐷33 = ℎ̇∕ℎ.

All the phases, namely the platens, the air, the suspending fluid, the
bre and the viscous layers were assumed to behave as incompressible
ower-law fluids with proper viscosities 𝜇j and kinematic constraints.
y neglecting inertia effects, the overall motion in Ω was ruled by the
ollowing momentum and mass balance equations:

𝛁 ⋅ 2𝜇𝐃 − 𝛁𝑝 = 𝟎
𝛁 ⋅ 𝐯 = 0 in Ω. (2)

here 𝜇 is the viscosity function in Ω, p the incompressibility pressure
nd v the velocity field. The proposed monolithic formulation consists
n finding v and p all over the global domain Ω. To close the boundary
alues problem, the following constitutive equations were made:
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Fig. 2. (a) Iso-values of the truncated fluid

level-set 𝜑f and adaptive mesh used to run

the simulation, displayed on platens and

fluid domains. (b) Iso-values of the veloc-

ity magnitude shown on platens and fluid

domains.
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• In the suspending fluid Ωf, the fluid viscosity 𝜇f was assumed to
follow a power law, i.e., 𝜇𝑓 = 𝑘�̇�𝑛−1

𝑒𝑞
; 𝑛 ≤ 1, where k was the con-

sistency, n the power-law index and �̇�𝑒𝑞 =
√
2𝐃 ∶ 𝐃 the generalised

shear rate.
• Fibres were considered as rigid bodies. Thus, in the fibre sub-

domains Ωi, the viscosities 𝜇i were set to a large constant value and
an extra term ∇ ·𝝈∗ was added on the right-hand side of the mo-
mentum equation Eq. (2) where the stress tensor 𝝈

∗ is a Lagrange
multiplier linked to the rigidity constraint 𝐃 = 0 [46]. Thus, after
convergence, the first term in Eq. (2) vanished, 𝜇i only playing the
role of a penalisation factor.

• The air and mould viscosities were set to constant values and were
adjusted at each time step with respect to the fluid viscosity 𝜇f in
order to get a plug flow for the suspension, i.e., a cylindrical front at
the air/fluid interface. Using preliminary simulations, we found that
the air viscosity 𝜇a could be purposely fixed to 10−3 min(𝜇𝑓 ), whereas
the solid motion inside the mould could be properly recovered if the
platen viscosity 𝜇p was around 103max(𝜇f). Thin lubricated layers
having the same thickness as the size of mixing layer defined further
were also added at the platen/fluid interfaces in order to get a plug
flow corresponding to perfect slip boundary conditions [47]. For that
purpose, preliminary simulations allowed us to adjust the constant
viscosity 𝜇l to the same value as the air viscosity 𝜇a.

.1.2. Numerical schemes

From a numerical viewpoint, the momentum equation Eq. (2) was
omputed in Ω with a finite element method. All subdomains were em-
edded in a unique Eulerian mesh using the immersed volume method
46]. Thus, level-sets were used to get (i) implicit representation of in-
erfaces between subdomains and (ii) proper definition of the viscosity 𝜇
s a space dependent function [46,48]. Each level set 𝛼j was associated
ith a sub-domain Ωj. Except for the air levelset 𝛼a that was defined as

he complementary of all the other ones, a levelset 𝛼j representing a pos-
tive/negative distance to the subdomain interface Γj was introduced:

𝑗 =
{
+𝑑𝑗 (𝐱) if 𝑥 ∈ Ω𝑗
−𝑑𝑗 (𝐱) if 𝑥 ∉ Ω𝑗

. (3)

Level set functions enabled us to properly ascribe the overall vis-
osity 𝜇 to its value 𝜇j in sub-domains Ωj. This was achieved by using
mooth Heaviside functions Hj:

(𝐱) =
∑
𝑗
𝐻𝑗 (𝐱) 𝜇𝑗 +

(
1 −

∑
𝑗
𝐻𝑗 (𝐱)

)
𝜇𝑎. (4)

Practically, levelsets were truncated in a narrow interval [−𝑒, 𝑒] us-
ng hyperbolic filters 𝜑𝑗 = 𝑒 tanh(𝛼𝑗∕𝑒) (Fig. 2a). Moreover, the functions

j also depended on e, i.e.,𝐻𝑗 = 1∕2(1 + 𝜑𝑗∕𝑒 ) in order to ensure smooth
ransitions of 𝜇 between subdomains.

Within this framework, the velocity and the pressure fields were
omputed by solving momentum and continuity equations (Eq. (2)), as
llustrated in Fig. 2b. The corresponding weak formulation was solved
sing the augmented Lagrangian method and the Uzawa algorithm
49] with mixed finite elements MINI-elements (P1+/P1) [50]. In ad-
ition, at a given time step, once the velocity field was estimated, the
evelset positions in Ω could be updated:
• Levelsets of compression platens were updated from their given rigid
body kinematics.

• Thanks to an efficient algorithm used to interpolate the velocity and
vorticity at the centre of fibres [51], the positions xi and the orien-
tations pi of the N fibres were updated by integrating the following
motion equations:{

𝑑𝐱𝑖
𝑑𝑡

= 𝐯
(
𝐱𝑖
)

𝑑𝐩𝑖
𝑑𝑡

= 1
2𝛁 × 𝐯

(
𝐱𝑖
)
⋅ 𝐩𝑖
. (5)

This was done using a second order Adams-Bashforth scheme. Once
he new positions and orientations of the particles were determined,
heir shapes were updated.

• The truncated levelset associated to the fluid/air interface was trans-
ported by the velocity solution v of the monolithic system according
to the following sets of equations:{

𝜕𝜑𝑓

𝜕𝑡
+ 𝐯.𝛁𝜑𝑓 = 0

𝜑𝑓 (𝑡 = 0, 𝐱 ) = 𝜑𝑓0(𝐱)
. (6)

A re-initialization step was also proven to be necessary to maintain
he geometrical properties of this levelset [46]. Thus, giving the evolu-
ion of the air/fluid interface, Eq. (6) was slightly modified as explained
n Ville and al. [52].

Finally, to solve the above set of equations, optimal meshes were
enerated using an anisotropic mesh adaptation based on an a posteriori

nterpolation error [46,53]. This meshing procedure enabled to capture
igh gradients of the flow solution with a good accuracy at a very low
umber of elements. The building of unstructured anisotropic meshes
as based on local mesh modifications, using a metric which minimised

he errors on multiple fields (namely the velocity and the levelset func-
ions associated to the platens, particles and the fluid). In order to con-
entrate the mesh in the neighbourhood of the different interfaces, the
evelset functions were replaced by their tangentially filtered functions
ith a characteristic thickness 𝐸 = 5 𝑒 (e being the characteristic thick-
ess used for mixing law). An example of anisotropic mesh is plotted in
ig. 2a. Our computations were made on a unitary cube Ω (the equa-
ions were scaled with a reference length) with 𝑒 = 10−3. The number
f nodes ranged from 80 000 to 250 000 according to the number of
bres, the time step being equal to 0.5 10−3 (scaled time). For the most
uspensions, the calculation time for a compression test was around two
ays on twenty processors until a Hencky compression strain |𝜀33| = 0.8.

.2. Theoretical approach

As mentioned in the introduction, a few authors modelled confine-
ent effects and in particular the collision between fibres and walls
uring the suspension flows. Recently, Perez et al. [41] proposed a di-
ect modification of Jeffery’s model in the case of slender cylindrical
bres (𝜆 = 1) immersed in an incompressible Newtonian fluid submit-
ed to simple shear flow in symmetrical contacts with walls. The anal-
sis is based on the rigid dumbbell model introduced by Bird et al.
44] and was recently extended to non-symmetrical contacts, Poiseuille
nd squeeze flows [6]. Herein, we revisit and extend it to the case of di-
ute fibre suspensions with power law fluids, with a proper description
f contact conditions in confined situations.
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Fig. 3. Fiber i modeled by a dumbbell. (a) Unconfined lubricated squeeze flow with hydrodynamic forces 𝐟ℎ±
𝑖

exerted on the upper and lower beads. (b) Confined

lubricated squeeze flow with centred dumbbell, hydrodynamic 𝐟ℎ±
𝑖

and contact 𝐟𝑖𝑐
±

forces exerted on the upper and lower beads. (c) Confined lubricated squeeze flow

with only one contact with the lower wall.
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Hence, each fibre i of the suspension is idealised as a dumbbell of unit
rientation vector pi, centre of mass Gi of position 𝐱𝐺𝑖 and velocity field

𝐺𝑖
and with two beads of diameter d separated by a distance l (Fig. 3).

he upper (+) and the lower (−) beads have respective positions 𝐱±
𝑖

and
elocities:

𝐯±
𝑖
= 𝐯𝐺𝑖 ±

𝑙

2
�̇�𝑖. (7)

During the suspension flow, the dumbbell is subjected to hydrody-
amic forces which were further denoted 𝐟ℎ±

𝑖
, and exerted on the upper

nd lower beads. These forces are assumed to depend on the relative
elocity Δ𝐯±

𝑖
between the fluid and the beads:

𝐯±
𝑖
= 𝐕𝐺𝑖 ±

𝑙

2
∇𝐕 ⋅ 𝐩𝑖 − 𝐯±

𝑖
, (8)

here ∇V is the macroscale velocity gradient and where 𝐕𝐺𝑖 is the ve-
ocity of the fluid surrounding the dumbbell at its centre of mass Gi.

By analogy with the expressions proposed by Bruschke and Advani
54] and Spelt et al. [55] for power-law fluids, or more generally by
rgéas et al. [56] for power law fluids, the hydrodynamic force 𝐟𝒉

𝒊
is

ssumed to be the gradient of a convex viscous dissipation potential
h(𝚫v) with respect to the relative velocity 𝚫v

i
between the dumbbell

nd the fluid at the considered point:

ℎ
𝑖
= 𝜕Φℎ
𝜕Δ𝐯𝑖

, (9)

nd such that

ℎ
𝑖

(
−Δ𝐯𝑖

)
= −𝐟ℎ

𝑖

(
Δ𝐯𝑖

)
. (10)

The convexity of Φh ensures that

ℎ
𝑖

(
Δ𝐯𝑖

)
= 𝐟ℎ
𝑖

(
Δ𝐯′𝑖

)
⇔ Δ𝐯′𝑖 = Δ𝐯𝑖. (11)

The potential Φh is expressed as a function of a norm Δveqi(Δvi) of
he relative velocity Δvi [56]:

ℎ
𝑖
= 𝜕Φℎ
𝜕Δ𝑣𝑒𝑞𝑖

𝜕Δ𝑣𝑒𝑞𝑖
𝜕Δ𝐯𝑖

= 𝜉
𝜕Δ𝑣𝑒𝑞𝑖
𝜕Δ𝐯𝑖

, (12)

here the hydrodynamic drag coefficient 𝜉 is a positive and convex rhe-
logical function of Δveqi. For example, if Δ𝑣𝑒𝑞𝑖 = ‖Δ𝐯𝑖‖ (as in [41,42]),
q. (12) writes as follows:

ℎ = 𝜉𝑖Δ𝐯𝑖. (13)

𝑖 c
For power-law fluids (as considered in this study), the drag coeffi-
ient 𝜉i can be expressed as:

𝑖 = 𝜉0Δ𝑣𝑛−1𝑒𝑞𝑖 , (14)

here 𝜉0 is a constant and n the power-law index of the suspending
uid.

.2.1. Unconfined lubricated squeeze flows

If the dilute fibre suspensions are squeezed with unconfined and
uasi-static flow situations, the first momentum balance equation of the
umbbell i yields:

ℎ−
𝑖

= −𝐟ℎ+
𝑖

(15)

According to Eqs. (9)–(14), and taking into account the expressions
f the upper and lower relative velocities Eqs. (7) and (8), the following
esult was straightforwardly obtained:

𝐺𝑖
= 𝐕𝐺𝑖 (16)

Thus, as for the Newtonian and isotropic case [41], the translation
f the dumbbell in a power law fluid follows that of the suspending
uid. In addition, the resulting torque at the centre of the dumbbell is
ull. Therefore the forces that act on each bead are colinear with the
rientation vector pi:

ℎ+
𝑖

= 𝛼𝐩𝑖 ⇔ 𝜉+𝑖
(
𝑙

2
∇𝐕 ⋅ 𝐩𝑖 −

𝑙

2
�̇�𝑖
)
= 𝛼𝐩𝑖, (17)

here 𝜉+
𝑖
= 𝜉𝑖(Δ𝑣𝑒𝑞𝑖(Δ𝐯+𝑖 )). Multiplying the last equation by pi and ac-

ounting for 𝐩𝑖 ⋅ 𝐩𝑖 = 1, and thus for 𝐩𝑖 ⋅ �̇�𝑖 = 0, we obtain:

= 𝜉+
𝑖

(
𝑙

2
∇𝐕 ∶ 𝐩𝑖 ⊗ 𝐩𝑖

)
, (18)

Replacing the expression of 𝛼 in Eq. (17) gives:

̇ 𝑖 = �̇�𝐽
𝑖
= ∇𝐕 ⋅ 𝐩𝑖 −

(
∇𝐕 ∶ 𝐩𝑖 ⊗ 𝐩𝑖

)
𝐩𝑖. (19)

Hence, regardless of the considered power law suspending fluids,
he rotary velocity �̇�𝑖 of the dumbbell is equivalent to that given by the
effery’s model �̇�𝐽

𝑖
(with 𝜆 = 1).

.2.2. Confined lubricated squeeze flows: centred fibres

We now consider the case where the dumbbell i is confined and cen-
red between two parallel compression platens (𝐶∗ = (1)). If its beads
o not touch the platens and neglecting lubrication forces normal to the
ompression platens as the beads become close to them, the problem is
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dentical to the previous unconfined flow situation: 𝐯𝐺𝑖 is an affine func-

ion of ∇V and �̇�𝑖 = �̇�𝐽
𝑖
. The problem has to be reconsidered when sym-

etrical contacts occur between the dumbbell and the walls (Fig. 3b),
.e., when 𝐱−

𝑖
⋅ 𝐞3 = 𝑑∕2. Then two flow situations occur. The first one

orresponds to ℎ̇ ≥ 0. For this flow configuration (uniaxial tensile flow),
ne recovers again the unconfined situation, i.e., 𝐯𝐺𝑖 = 𝐕𝐺𝑖 and �̇�𝑖 = �̇�𝐽

𝑖
.

he second case occurs when ℎ̇ < 0 (uniaxial compression). Here, oppo-
ite contact forces 𝐟 𝑐+

𝑖
and 𝐟 𝑐−

𝑖
are introduced [41]. They are exerted

long the direction perpendicular to the upper and the lower walls, i.e.,

he direction e3 in this study:

𝑐±
𝑖

= ∓𝑓𝑐
𝑖
𝐞3. (20)

here 𝑓𝑐
𝑖

is the norm of the contact forces. The first momentum balance
quation projected along the compression platens also yields Eq. (15).
aking into account the force properties of Eqs. (10) and (11) finally
ields Eq. (16) so that the dumbbell translation follows that of the sus-
ending fluid. Furthermore, as the overall torque at the centre of the
umbbell has to vanish, forces exerted at the beads are collinear with
he dumbbell orientation vector pi:

ℎ+
𝑖

+ 𝐟 𝑐+
𝑖

= 𝛼′𝐩𝑖 (21)

Multiplying the last equation by the unit orientation vector pi and
eeping in mind that 𝐩𝑖 ⋅ �̇�𝑖 = 0, an expression of the scalar 𝛼′ can be
btained so that Eq. (21) yields the following expression of the rotary
elocity of the dumbbell:

̇ 𝑖 = �̇�𝐽
𝑖
+ �̇�𝑐

𝑖
= ∇𝐕 ⋅ 𝐩𝑖 −

(
∇𝐕 ∶ 𝐩𝑖 ⊗ 𝐩𝑖

)
𝐩𝑖 +

2𝑓𝑐
𝑖

𝑙𝜉+
𝑖

(
𝑝𝑖3𝐩𝑖 − 𝐞3

)
(22)

ith pi3 the component of the dumbbell orientation vector along e3.
sing the affine result, the last expression as well as the non-penetration
onditions of the beads at the walls, e.g., 𝐯−

𝑖
⋅ 𝐞3 = 0 for the lower bead,

eads to:

2𝑓𝑐
𝑖

𝑙𝜉+
𝑖

=
�̇�𝐽
𝑖3 − 𝐷

𝑑
33𝑝𝑖3

1 − 𝑝2
𝑖3

(23)

here 𝐷𝑑33 = 𝐷33 (1 + 1∕𝛽 𝑝3). This yields the following expression of
he contact contribution �̇�𝑐

𝑖
of rotary velocity of the dumbbell:

̇ 𝑐
𝑖
=
�̇�𝐽
𝑖3 − 𝐷𝑑33 𝑝𝑖3

1 − 𝑝2
𝑖3

(
𝑝𝑖3𝐩𝑖 − 𝐞3

)
(24)

More precisely the rotation rate of the third component (namely the
ut-of-plane angle 𝜃) reads

̇ 𝑐
𝑖3 = − �̇�𝐽

𝑖3

1 − 3 𝑝2
𝑖3 − 2∕𝛽 𝑝𝑖3

3
(
1 − 𝑝2

𝑖3
) (25)

The sign of numerator, 1 − 3 𝑝2
𝑖3 − 2∕𝛽 𝑝𝑖3, gives the evolution of the

otation rate (either a faster or a slower rotation). For large aspect ratio
, the change of sign occurs around 55∘. Basic numerical computations
how that this angle increases for small value of 𝛽.

In conclusion for this elongational flow, the translation of the dumb-
ell centre of mass is still an affine function of the macroscale fluid
elocity. In addition, if the contact condition is fulfilled and the contact
ontribution Eq. (25) becomes effective, the fibre rotation rate is higher
han that predicted by the Jeffery’s model for fiber having an out-of-
lane angle lower than 55∘. On the other hand, the effect of contact
etween platen and fiber is less important for fiber already aligned with
orizontal platens. It is important to mention that these results do not
epend on the rheology of the considered suspending fluids.

.2.3. Confined lubricated squeeze flows: non-centred fibres

Lastly, we consider the case where the dumbbell i is positioned asym-
etrically with respect to the walls, i.e., with its centre of mass Gi closer

o one wall, e.g. the lower platen as shown in Fig. 3c. Here again, as long
s the dumbbell does not touch the platens, the dumbbell kinematics is
he same as in the unconfined case. When 𝐱− ⋅ 𝐞3 = 𝑑∕2, the dumbbell
𝑖

ouches the lower compression platen and its kinematics is that of the
nconfined case if ℎ̇ ≥ 0. The contact force 𝐟 𝑐−

𝑖
is exerted on the lower

ead when ℎ̇ < 0. The first momentum balance then yields:

ℎ−
𝑖

+ 𝐟 𝑐−
𝑖

+ 𝐟ℎ+
𝑖

= 0, (26)

eading to the following expression of 𝐯𝐺𝑖 − 𝐕𝐺𝑖 :

𝐺𝑖
− 𝐕𝐺𝑖 =

𝑙

2
𝜉+
𝑖
− 𝜉−

𝑖

𝜉+
𝑖
+ 𝜉−

𝑖

(
𝛁𝐕 ⋅ 𝐩𝑖 − �̇�𝑖

)
+

𝑓𝑐
𝑖

𝜉+
𝑖
+ 𝜉−

𝑖

𝐞3 (27)

To simplify this expression, we temporarily consider the same prob-
em, but with the dumbbell touching the upper platen instead of the
ower one (denoted with the symbol “∗” in the following). The similar-
ty of the problem with respect to that sketched in Fig. 3c is such that the
rientation 𝐩∗

𝑖
and the orientation rate �̇�∗

𝑖
of the dumbbell, the contact

orce intensity 𝑓𝑐∗
𝑖

as well as the function 𝜉+∗
𝑖

+ 𝜉−∗
𝑖

must be identical.
herefore, one easily gets:

∗
𝐺𝑖

− 𝐕∗
𝐺𝑖

= 𝑙
2
𝜉+∗
𝑖

− 𝜉−∗
𝑖

𝜉+∗
𝑖

+ 𝜉−∗
𝑖

(
𝛁𝐕 ⋅ 𝐩𝑖 − �̇�𝑖

)
−

𝑓𝑐
𝑖

𝜉+∗
𝑖

+ 𝜉−∗
𝑖

𝐞3 (28)

In addition, the vertical fluctuations (𝐯𝐺𝑖 − 𝐕𝐺𝑖 ) ⋅ 𝐞3 and (𝐯∗
𝐺𝑖

− 𝐕∗
𝐺𝑖
) ⋅

3 must be opposite. Hence, accounting for the two last equations, this
ondition is fulfilled when 𝜉+

𝑖
= 𝜉−

𝑖
(or 𝜉+∗

𝑖
= 𝜉−∗

𝑖
). Consequently, for the

ow situation considered in Fig. 3c, the following expression is obtained:

𝐺𝑖
= 𝐕𝐺𝑖 +

𝑓𝑐
𝑖

2𝜉−
𝑖

𝐞3 (29)

here the vertical fluid velocity 𝑉𝐺𝑖3 at the center of mass is equal
o (𝑙∕2 𝑝3 + 𝑑∕2)ℎ̇∕ℎ. The second momentum balance implies that the
orces exerted on each bead must be colinear. For the upper beads this
s expressed as:

ℎ+
𝑖

= 𝛼′′𝐩𝑖, (30)

As before, this leads to the following expression of the rotary velocity
f the dumbbell:

̇ 𝑖 = �̇�𝐽
𝑖
+ �̇�𝑐

𝑖
= ∇𝐕 ⋅ 𝐩𝑖 −

(
∇𝐕 ∶ 𝐩𝑖 ⊗ 𝐩𝑖

)
𝐩𝑖 +

𝑓𝑐
𝑖

𝑙𝜉−
𝑖

(
𝑝𝑖3𝐩𝑖 − 𝐞3

)
. (31)

Combined with the non-penetration condition 𝐯−
𝑖
⋅ 𝐞3 = 0 for the

ower bead, this leads to:

̇ 𝑐
𝑖
=
�̇�𝐽
𝑖3 − 𝐷

𝑑
33 𝑝𝑖3

2 − 𝑝2
𝑖3

(
𝑝𝑖3𝐩𝑖 − 𝐞3

)
(32)

As in the previous section, the third component expresses the rota-
ion rate,

̇ 𝑐
𝑖3 = − �̇�𝐽

𝑖3

1 − 3 𝑝2
𝑖3 − 2∕𝛽 𝑝𝑖3

3
(
2 − 𝑝2

𝑖3
) (33)

here only the denominator changes with respect to Eq. (25).
With the non-penetration condition, an expression of 𝐯𝐺𝑖 can also be

btained:

𝐺𝑖
= 𝐕𝐺𝑖 +

𝑙

2

�̇�𝐽
𝑖3 −𝐷33

(
𝑝𝑖3 +

1
𝛽

)
2 − 𝑝2

𝑖3

𝐞3 (34)

Consequently, for asymmetrical configurations, if the contact condi-
ion is fulfilled and if the compression platens become closer, the two
ast equations prove that (i) the translation of the dumbbell centre of
ass is no more an affine function of the macroscale fluid velocity, (ii)

s in the previous section, the fibre rotation rate is higher than that pre-
icted by the Jeffery’s model when the vertical angle is lower than 55∘.
ere again, it is interesting to notice that these results do not depend
n the rheology of the considered suspending fluids.
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Table 1

Test number with their characteristics: number of fibres N and fibre aspect ratio 𝛽 in the

suspensions, initial strain rate 𝐷0
33 used for the compression test, minimal Δ𝑥𝑖

𝑚𝑖𝑛
and maximal

Δ𝑥𝑖
𝑚𝑎𝑥

recorded dispersion for the position of the fibre centres of mass with respect to the

affine assumption.

Test number 1 2 3 4 5 6 7 8 9

N 1 1 1 1 1 1 5 8 8

𝜙 (%) 0.013 0.013 0.015 0.013 0.011 0.011 0.11 0.21 0.16

𝛽 16.5 17 19.5 17.5 14.5 14.5 12.6 17.9 17.7

𝐷0
33(𝑠

−1) 0.004 0.004 0.03 0.03 0.03 0.03 0.03 0.004 0.03

Δ𝑥𝐸𝑥𝑝
𝑚𝑖𝑛

(%) – – – – – – 2.0 2.1 1.5

Δ𝑥𝐸𝑥𝑝𝑚𝑎𝑥 (%) 8 7.5 8.2 5.6 7.6 3.9 4.1 7.1 5.9

Δ𝑥𝑁𝑢𝑚
𝑚𝑖𝑛

(%) – – – – – – 0.5 0.5 0.3

Δ𝑥𝑁𝑢𝑚
𝑚𝑎𝑥

(%) 0.6 0.3 0.15 0.6 0.2 0.7 1.4 3 2.1
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.3. Experimental approach

We briefly recall here the information related to the experiment that
ave been reported in [43], the results which will be compared to the
umerical simulation in the next section. Non-Newtonian dilute fibre
uspensions were prepared and subjected to lubricated compression ex-
eriments using a micro-rheometer mounted in a synchrotron X-ray mi-
rotomograph (Tomcat beamline, SLS, Villigen, Switzerland). The fluid
sed to make fibre suspensions was a hydrocarbon gel (paraffin). At
0 C, the gel viscosity exhibited a non-Newtonian strain-thinning power-
aw close to that of polymer matrices used in the composite industry,
ith a consistency 𝑘 = 440 𝑃𝑎.𝑠1−𝑛 and a power-law index 𝑛 = 0.2. Fibres
ere extracted from fluorocarbon (PVDF) elastic fishing wire (diameter
= 200 𝜇𝑚). More details about the matrix rheology or the suspension

rocessing are reported in [43]. Fibre suspensions were subjected to lu-
ricated simple compression loading at 50 C and constant velocities ℎ̇.
he suspension flow was considered as confined due to poor scale sepa-
ation such that𝐶∗ = ℎ∕𝑙 = (1). The 3D fibrous microstructures and the
ow fronts of the suspensions were imaged in real-time using fast X-ray
icrotomography. Nine experiments were performed: six samples with

ne fibre placed in the centre of samples and different initial orienta-
ions (𝜃0

𝑖
, 𝜑0

𝑖
), and three samples with five to eight fibres corresponding

o a dilute concentration regime (𝜙≪1/𝛽2), as summarised in Table 1.

. Results and discussion

.1. Motion of a single fibre: numerical simulation vs. dumbbell approach

The kinematics of a single fibre in a squeezed suspending fluid was
rst analysed (i) to investigate the influence of the confinement and the
heology of the suspending fluid, (ii) and to check the capability of the
nalytical dumbbell model to recover simulation results. For that pur-
ose, the simulated fibre was idealised as a sphero-cylinder of length
+ 𝑑 (in accordance with Fig. 3) with an aspect ratio 𝛽 ≈15 close to
hat measured experimentally (next subsection). The fibers are put in
he reference plane Oxy (𝜑𝑖0 = 0◦.) and the suspending fluid had either
Newtonian (𝑛 = 1) or a power-law viscosity with high strain-thinning

ffects (𝑛 = 0.2). Note that we also performed simulations without con-
nement, i.e., with 𝐶∗

0 = 10. The corresponding results (not shown here)
ere identical to those found for the confined situation with 𝐶∗

0 = 3 in
ection 3.1.1. Lastly, the velocity ℎ̇ of the upper plate was arbitrary
et to −100 𝜇𝑚.𝑠−1: Here again, the trends described in the sequel were
dentical for other values of ℎ̇ (not shown here).

.1.1. Fibre centered between compression platens

The centre of mass of the fibre was first placed initially at the cen-
re of the fluid domain and computations are made for various initial
onfinement parameters and angles. Fig. 4 gathers numerical results,
umbbell model and Jeffery’s predictions. The Fig. 4(a and b) were built
o give rise to large Hencky deformation and fibres were progressively
ligned along the plane perpendicular to the compression direction: the
nitial angles were 𝜃𝑖0 = 10◦ and 70∘, whereas the initial heights of the
ample h0 were 12 and 4 mm, leading to initial confinement parameters
∗
0 = ℎ0∕𝑙 equal to 3 and 1.3. For Fig. 4(c–f), parameter ranges were
hosen close to experimental situations (small strain deformation): the
nitial angle was 𝜃𝑖0 = 30◦ and the initial height of the sample h0 was
aried, being equal to 7, 3 and 2.7 mm, leading to initial confinement
arameters 𝐶∗

0 equal to 2.3, 1 and 0.9, respectively.
From these figures, we can deduce the following comments:

• If there is not contact between the fiber and the platens, the evolu-
tions of the out-of-plane angle 𝜃i plotted in Fig. 4(a, b, e, f) showed
that the predictions of the Jeffery’s model, i.e., Eq. (2) and the dumb-
bell model Eq. (19), were very close to the numerical results when
a Newtonian fluid was considered. The small differences observed
can be related to the aspect ratios of the cylinder used in Jeffery’s
model which is slightly different from sphero-cylinder used in sim-
ulations. Moreover, a small difference of the rotation between Jef-
fery’s and the dumbbell predictions is due to their relative aspect
ratios, 𝜆 = 0.984 and 1 respectively. Thus, despite the poor scale sep-
aration parameters 𝐶∗

0 = (1), the Jeffery’s model is robust enough
for these confined situations. For a highly strain-thinning power-law
fluid (𝑛 = 0.2), the relevance of the Jeffery’s and the dumbbell model
was still very satisfactory for the same flow configurations. This re-
sult is surprising bearing in mind the significant differences reported
in the literature when shearing suspensions with other fluids such as
viscoelastic fluids [28,29].

• Secondly, it is also worth noting that fibres also exhibited faster 𝜃-
rotations as they touched the compression platens Fig. 4b, orange
arrow, |ɛ33| ∼0.3 and, 𝐶∗

0 = 1.3; Fig. 4(c–f), |ɛ33| ∼0.2 and, 𝐶∗
0 = 1.

and 0.9) for both Newtonian and highly strain-thinning power-law
fluid. These figures also show that (i) this rotation change did not de-
pend on the rheology of the suspending fluid, (ii) the Jeffery’s model
failed to predict the numerical fibre orientation and (iii) the pro-
posed dumbbell approach Eqs. (23), (25) fairly well predicted them.

• During compression, the simulated orientation angle 𝜑i remained
unchanged and equal to its initial value𝜑i0, regardless of the values
of n and C∗. This is in accordance with the prediction of the standard
Jeffery’s model and with the dumbbell approach Eqs. (22), (24).

• To check whether the fibre translation followed an affine motion
with the macroscale suspension flow (this assumption is embedded
in the Jeffery’s and the dumbbell models), the numerical deviation
Δ𝑥𝑛𝑢𝑚
𝑖

= ‖𝐱𝑛𝑢𝑚
𝐺𝑖

− 𝐱𝐽
𝐺𝑖
‖∕ℎ𝑟𝑒𝑓 was plotted in Fig. 4d as a function of

|ɛ33|, where 𝐱𝑛𝑢𝑚
𝐺𝑖

is the simulated position of the fibre centre of

mass and 𝐱𝐽
𝐺𝑖

the position that was predicted using an affine motion

with the macroscale velocity gradient (href was set equal to 12 mm
to obtain comparable results). The graph proves that the deviation
Δ𝑥𝑛𝑢𝑚
𝑖

remained small (<1%). However, this deviation is always
slightly higher for the power-law fluid than for the Newtonian fluid.
Thus, regardless of the investigated power-law index n and the (non-
)occurrence of contacts, it is fair to conclude that for the considered
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Fig. 4. Compression of samples with a centred

fibre immersed in Newtonian and power-law

fluids (𝑛 = 1 and 0.2) for different initial con-

finement parameters: (a) 𝐶∗
0 = 3; (b) 𝐶∗

0 = 1.3
and (c-f) 𝐶∗

0 = 2.3; 1; 0.9. In (a-b) and (e-f), evo-

lutions of the orientation angle 𝜃i with |ɛ33|

and comparison between numerical computa-

tions (marks) the dumbbell model (dotted line)

and Jeffery’s predictions (line). The evolutions

of the fibre/platens distance Zf/cp and the dis-

persion Δ𝑥𝑛𝑢𝑚
𝑖

with |ɛ33| are plotted in (c) and

(d), respectively.

3

l
ℎ

o
e
i

a
p

symmetrical configuration, the predicted fibre translation followed
the affine assumption that was presumed by the Jeffery’s and the
dumbbell models.

.1.2. Asymmetrical case

The situations where a fibre was initially located nearer to the
ower platen were also investigated. For that, an initial sample height

0 = 7 mm (𝐶∗
0 = 2.3) was chosen and the fibre was positioned such as

ne extremity was 0.11 mm away from the lower platen. The initial ori-
ntation was the same as in the previous section. Results are reported
n Fig. 5 where simulated and analytical evolutions of the out-of-plane
ngle 𝜃i and the dispersion Δ𝑥𝑛𝑢𝑚
𝑖

are plotted as function of the com-
ression strain |ɛ33|.

• Similarly to the symmetrical case, the simulated orientation angle
𝜑i remained constant (not shown here), regardless of the considered
fluid and in accordance with the Jeffery’s and dumbbell models.

• For the Newtonian fluid, a good accordance between the Jeffery’s
predictions and the simulation was also noticed while the fibre did
not touch the lower platen, i.e., while |ɛ33| <0.15: Jeffery’s orbit was
well followed by the simulation (Fig. 5a), as well as the affine motion
of the centre of mass of the fibre (Fig. 5b). As the compression strains
remained moderate before contact, this result was also valid for the
strain-thinning fluid.
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Fig. 5. Compression of samples with a non-

centred fibre immersed in Newtonian and

power-law fluids (𝑛 = 1 and 0.2) and with 𝐶∗
0 =

2.3. Evolutions of the fibre orientation an-

gle 𝜃i (left graphs) and the deviation Δ𝑥𝑛𝑢𝑚
𝑖

(right graphs) with |ɛ33|: numerical simula-

tions (marks), predictions of the Jeffery’s (line)

and the dumbbell (dotted line) models.

Fig. 6. Compression of sample 1 to 6 (one fibre per sample). Evolutions of the measured (marks), analytically (lines, Jeffery’s model) and numerically (dashed lines)

predicted angles 𝜃i (a) and 𝜑i (b) with |ɛ33|. Experimental and numerical evolutions of the deviations Δ𝑥𝑒𝑥𝑝
𝑖

and Δ𝑥𝑛𝑢𝑚
𝑖

with |ɛ33|.
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• After the contact indicated by the dotted arrows, this was no more
valid. Firstly, the fibre rotation was faster than that predicted by
the Jeffery’s model Fig. 5a), but lower than the rotation recorded
for the symmetrical case (Fig. 4c–d). Secondly, noticeable devia-
tions of the fibre translation from the affine assumption were ob-
served (Fig. 5b). It is also interesting to notice that these tendencies
were practically identical for the Newtonian and the highly strain-
thinning fluid. Lastly, the graphs in Fig. 5 show the fairly good pre-
dictions of the dumbbell model Eqs. (31)–(32).

.2. Comparison with experiments

The results of the experiments reported in [43], summarised in
ubSection 2.3 are now compared with the predictions of the numer-
cal simulations with cylindrical fibres, the Jeffery’s and the dumbbell
odels. As stated in subSection 2.1, the sample sizes, the fibre geome-

ry (with a cylindrical shape), orientations and positions and the punch
elocities were used as numerical input data for the simulations. Results
re shown in Figs. 6 and 7. Those obtained with the suspensions with
ne fibre (samples 1 to 6) are gathered in Fig. 6, whereas Fig. 7 refers
o dilute fibre suspensions (samples 7 to 9). The graphs a-b in Fig. 6 and
–f in Fig. 7 show the evolutions of the angles 𝜃i and 𝜑i of each fibre i

ith the compression strain |ɛ33|. Graph (c) in Fig. 6 shows the evolu-
ion with |ɛ33| of the numerical (resp. experimental) deviations Δ𝑥𝑛𝑢𝑚

𝑖

resp. Δ𝑥𝑒𝑥𝑝
𝑖

= ‖𝐱𝑒𝑥𝑝
𝐺𝑖

− 𝐱𝐽
𝐺𝑖
‖∕ℎ0) of the fibre centres of mass (correspond-

ng minimal and maximal values are listed in Table 1). The following
omments can be made.
• For the samples with one fibre, Fig. 6 shows the fairly good accor-
dance between the experimental and simulation results. Indeed, re-
gardless of the considered initial fibre orientations, the simulations
well captured, i.e., with a maximal difference of 3∘, both the stag-
nation of the in-plane angles 𝜑i and the increase in the out-of-plane
angles 𝜃i during compression. However, the numerical deviations
Δ𝑥𝑛𝑢𝑚
𝑖

remained close to 0 (<0.5%), whereas Δ𝑥𝑒𝑥𝑝
𝑖

could reach
several percent (<8%) after experimental compressions (Fig. 6c).
As previously mentioned [43], experimental deviations Δ𝑥𝑒𝑥𝑝

𝑖
could

probably be attributed to undesirable rigid body motions of the com-
pressed samples that altered these measurements. Thus, despite this
discrepancy, results of Fig. 6 tend to validate the numerical approach
as a proper method to finely model the kinematics of fibres immersed
in non-Newtonian suspending fluids.

• In spite of both the low power law index of the suspending fluid and
the flow of the suspensions in narrow gaps (𝐶∗ = (1)), Fig. 6 again
shows the robustness and relevance of the Jeffery’s model (as well as
the dumbbell model). Again the analytical predictions of orientation
angles show a good accordance with numerical and experimental
results. Note that this remark is valid because fibres considered here
did not touch the compression platens.

• For dilute fibre suspensions (samples 7 to 9), the angles 𝜃i increased
during compression while the angles 𝜑i remained more or less con-
stant (Fig. 7), in a way similar to the samples with one fibre (Fig. 6).
However, for some fibres, as indicated by the arrows in Fig. 7c–f, the
angles 𝜑i slightly varied and the angles 𝜃i increased more rapidly at
given compression strains. As shown in Fig. 7, apart from the simu-
lated angles 𝜑i for the marked fibres shown by the arrows, it is in-
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Fig. 7. Compression of samples 7 to 9. Evolutions of the measured (marks), analytically (lines, Jeffery’s model) and numerically (dashed lines) predicted angles 𝜃i

(a) and 𝜑i (b) with |ɛ33|. Black arrows denote fibres closed to the walls (less than half one fibre diameter) whereas orange arrows show the contact with platen(s)

during compression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Horizontal slices in the middle of the numerical samples showing colormaps of the generalised shear rate �̇�𝑒𝑞 at a compression strain |𝜀33| = 0.4 for samples

7 (a), 8 (b) and 9 (c).

F

o

l

teresting to note that the aforementioned experimental trends were
rather well-captured by the numerical simulation.

• Also, Fig. 7 proves that predictions of Jeffery’s model are satisfac-
tory, except for the fibres shown by the arrow where the predicted
angles 𝜃i are noticeably lower than the experimental and simulated
angles. As the considered concentration regime is dilute, the origins
ig. 9. Evolutions of the angles 𝜃i (a,c) and the deviations Δ𝑥𝑒𝑥𝑝
𝑖

and Δ𝑥𝑛𝑢𝑚
𝑖

(b,d) for

range arrows (experimental: filled, numerical: dotted) denote the first contact of the

ower platen. (For interpretation of the references to colour in this figure legend, the
of these discrepancies should not be related to fibre-fibre contacts.
Both acquired 3D images and simulation results helped us to check
this point. In addition, deviations should not be induced by long
range hydrodynamic interactions between fibres. Thanks to the sim-
ulation, this assumption could be verified: the generalised shear rate
colormaps in Fig. 8 showed that high shear rate zones were located in
two fibres in contact with compression platens in samples 8 (a) and 9 (b). The

considered fibre with the upper platen, and the red arrows the second with the

reader is referred to the web version of this article.)
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the vicinity of fibres only, i.e., in zones with a thickness close to one
fibre diameter d. This phenomenon should not alter the kinematics
of other fibres.

• Note also that for this dilute suspension, the main stress tensor cor-
responds globally to a squeeze flow and the flow motion remains
axisymmetric. In particular a plug flow is always observed.

• Thus, the observed and simulated contacts of fibres with platens
were probably be the main reason for the observed discrepancies.
More precisely, when contacts with the platens occurred, both the
numerical fibre orientation and deviation from the affine assump-
tion deviated abnormally away from the Jeffery’s prediction. This is
shown in Fig. 9 for the kinematics of two fibres, namely those indi-
cated by the green triangles and pink circles in Fig. 7c,d and Fig. 7e,f,
respectively. The dotted orange (resp. red) arrows in Fig. 9 denote
the occurrence of the numerical contacts between the considered
fibre and one (resp. two) compression platen. Fig. 9a,b show that
the first contact occurred at |ɛ33|∼ 0.2, whereas in Fig. 9c,d the
fibre extremity firstly entered in contact with the upper platen at|𝜀33| = 0.34. The numerical description could be improved. Indeed,
contacts were detected a bit earlier in the experiments than in the
simulations. Simulation results were semi-quantitatively in accor-
dance with the experiments for the deviations Δ𝑥𝑛𝑢𝑚

𝑖
. However, in

this case, experimental artefacts could have altered the values of
Δ𝑥𝑒𝑥𝑝
𝑖

(cf. the first point above). A discrepancy between experimen-
tal and numerical orientation angle 𝜃i was observed in Fig. 9a. On the
contrary, the numerical description of the orientation angle 𝜃i was
very good in Fig. 9c. Lastly, it is worth mentioning that the analytical
predictions proposed by the dumbbell model were also acceptable
and very close to numerical results. A small difference was obtained
between the analytical and numerical results, as the simulated fibres
were cylinders (in accordance with the experiments) and not sphero-
cylinders (underlying assumption of the present dumbbell model).

. Concluding remarks

To better understand flow-induced fibrous microstructures in short
bre-reinforced composites during their forming operations, the kine-
atics of fibres in fibre suspensions were finely investigated. For that
urpose, we combined fibre scale FE numerical simulations, analytical
odelling and rheometry experiments coupled with 3D real time obser-

ations of their evolving fibrous microstructures. Restraining the study
o dilute systems, as a first step towards more concentrated regimes, the
nalysis aimed to answer on three major and open questions. What is
he effect of the non-Newtonian rheology of the suspending fluid on the
bre kinematics? What is the effect of confinement? Is there a relevant
ompact analytical model to describe these effects? The main conclu-
ions drawn from this study are given hereafter:

• From a methodological standpoint, a monolithic and multiphase Eu-
lerian FE formulation was used. This FE was able to model, using
levelsets, transport and advanced meshing algorithms, the motion
of rigid fibres immersed in power-law fluids. It was proved that this
numerical framework could recover the well-known Jeffery’s kine-
matics of a single fibre in a Newtonian fluid under unconfined and
homogeneous compression flow. The FE results were also compared
with 3D images obtained previously [43] in the case of confined lu-
bricated compression of power-law strain-thinning suspending fluid
containing one or several fibres. The original comparison was rigor-
ously achieved, i.e., using the initial 3D images as initial conditions
as well as the experimental boundary conditions measured during
compression. The good accordance between simulation and experi-
mental results demonstrated the validity of the FE approach to study
at the fibre scale the rheology of dilute fibre suspensions with power
law fluids and confined flow situations.

• For the considered flows and fluid rheologies, i.e., lubricated com-
pression with Newtonian or strain-thinning power-law fluids (𝑛 =
0.2) close to industrial polymer matrices, it was fair to conclude that
fibre kinematics was practically not affected by the fluid rheology.
It could be interesting to validate this key result for lower values of
n→0, and yield stress or viscoelastic fluids, as well as for other fibre
aspect ratios.

• Combining experimental and numerical results, the effects of con-
finement on fibre kinematics was investigated in detail. Astonish-
ingly, while fibres did not touch walls, i.e., even for low values of the
confinement parameter, numerical simulations proved that the fibre
kinematics could be considered to be unaffected. Under such circum-
stances, the rotation of fibres could be described using the Jeffery’s
equation and the translation of the centres of mass of fibres followed
affine motion with the macroscale flow field of the suspensions. Con-
finement effects arose when fibres touched the compression platens.
Then, the affinity of the motion of fibres was lost, and fibres rotation
deviated from the Jeffery’s orbit, with a faster rotation rate. These
numerical trends were supported by experimental observations.

• From these results, we validated an extension of the dumbbell model
[41] as a heuristic alternative of the Jeffery’s equations to analyti-
cally predict the motion of fibres in the considered flow situations,
i.e., for power-law fluids and elongational confined or unconfined
flows. Similar results were obtained by using a cell model around
a fiber in [59]. For unconfined or confined flows without contact
between fibres and walls, the dumbbell model is equivalent to the
Jeffery’s equations for slender fibres, regardless of the rheology of
the considered fluids. This model provides nice fitting of numerical
simulations and experiments. When fibres touched the walls, ana-
lytical corrections of the Jeffery’s equations were found to describe
the non-affine translation of contacting fibres and their increasing
rotation rate. These corrections did not depend on the fluid rheol-
ogy, could well capture the observed numerical and experimental
trends. They could also be implemented in software used to predict
the forming operations of short fibre-reinforced polymer composites.
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