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Abstract

This paper presents an investigation of the macroscopic mechanical behavior of highly con-
centrated &ber suspensions for which the mechanical behavior is governed by local &ber–&ber
interactions.

The problem is approached by considering the case of a net of rigid &bers of uniform
length, linked by viscous point interactions of power-law type. Those interactions may result in
local forces and moments located at the contacting point between two &bers, and respectively
power-law functions of the local linear and angular velocity at this point.

Assuming the existence of an elementary representative volume which size is small compared
to the size of the whole structure, the &ber net is regarded as a periodic assembly of identi-
cal cells. Macroscopic equilibrium and constitutive equations of the equivalent continuum are
then obtained by the discrete and periodic media homogenization method, based on the use of
asymptotic expansions.

Depending on the order of magnitude of local translational viscosities and rotational viscosities,
three types of the equivalent continua are proved to be possible. One of them leads to an e;ective
Cosserat medium, the other ones being usual Cauchy media. Lastly, formulations that enable
an e;ective computation of constitutive equations are detailed. They show that the equivalent
continuum behaves like an anisotropic power-law <uid.
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1. Introduction

Understanding the behavior of short &ber-reinforced <uids is of great interest in
many industrial applications such as the processing of polymeric materials and other
composites. In short &ber systems processing, &bers noticeably in<uence the <ow of the
<uid matrix and conversely, the <ow of the matrix determines the spatial distribution
and orientation of &bers, which makes the modeling of such a problem complex.
Many relevant theoretical studies on this topic, forming an important part of the the-

ory of suspensions, have tried to establish the relation between the microscopic prop-
erties of such materials, given by the behavior, geometry, orientation and distribution
of &bers, and macroscopic mechanical behavior, under some restrictive assumptions.
They generally apply to the case of rigid straight &bers immersed in a Newtonian <uid
when short range interactions between &bers may be neglected, that is to say for dilute
and semi-dilute suspensions (Batchelor, 1971; Advani, 1994).
However, those theories cannot account properly for the e;ects of local interactions

between &bers, that may be due to dry friction e;ects or localized viscous forces (Toll
and Manson, 1994), and their validity is therefore limited to quite dilute suspensions,
which is not the case of many industrial processes such as compression of Sheet Mold-
ing Compounds (SMC) or Glass Mat Transfer (GMT), or injection of Bulk Molding
Compounds (BMC) (Dumont et al., 2003; Le Corre et al., 2002). Moreover, the com-
plete solving of theoretical problems often requires further statistical assumptions that
make the e;ective calculation of the behavior possible only in the case of perfectly
unidirectional or perfectly isotropic orientations of &bers (Fredrickson and Shaqfeh,
1989; Shaqfeh and Fredrickson, 1990).
Furthermore, almost no analytical solutions can be found in the literature in the

case of non-Newtonian <uids reinforced with &bers. This is due to the diHculty of
calculating velocity &elds around &bers as in the Newtonian case (Je;ery, 1922), and
to the non-applicability of the superposition principle often used in that case. However,
according to the work of Batchelor (1971), the behavior at high concentration regimes
is mainly dominated by short range interactions between &bers, the contribution to the
total stress of the matrix and of the &ber–matrix interaction becoming then negligible.
The critical &ber concentration for such an assumption to be valid cannot be established
in a general way. It largely depends on the &ber’s geometry but it is also conditioned
by the nature of the matrix and of the interactions.
Assuming a highly concentrated regime, the macroscopic behavior of a suspension

can be drawn from some simple micro-mechanical considerations as it is done in the
works of Toll and Manson (1994), Gibson and Toll (1999) and Servais et al. (1999)
in the case of planar &bers linked by a combination of dry and non-linear viscous
interactions. However, the interesting results obtained by these authors lack generality
for they only apply to simple viscometric <ows such as biaxial extension or simple
shear <ow.
As a &rst step towards a more general approach to the modelling of the behavior

of short &ber systems, this paper exposes an homogenization method suitable for the
modelling of highly concentrated &ber suspensions linked by non-linear viscous interac-
tions of power law type. This method is an application of the homogenization method
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of discrete and periodic media, initially developed by Moreau and Caillerie (1995),
Tollenaere and Caillerie (1998) and Pradel (1998) for the modelling of periodic trusses
or foams in the scope of elasticity. It is based on the use of asymptotic expansion
methods for periodic homogenization proposed by Bakhvalov and Panasenko (1989),
Bensoussan et al. (1978) and Sanchez-Palencia (1980), adapted to discrete problems.
Starting from a discrete problem at the scale of the &bers (microscopic scale), the pro-
posed method enables &nding the essential properties of the equivalent continuum, that
is to say the general form of its balance and constitutive equations at the macroscopic
scale.
In Section 2 are detailed the basic assumptions of the upscaling method, the notations

adapted to the discrete geometrical description of the net and the assumptions relative
to the modelling of interactions between &bers. In Section 3, the upscaling process,
based on asymptotic expansions, is discussed and preliminary results are exposed. This
process then enables the discrete balance equations of the &ber net to be transformed
into continuous ones: this leads to the de&nition of the macroscopic stress tensors of the
equivalent continuum (see Section 4). Depending on the &ber–&ber interaction laws at
the microscopic level, three types of macroscopic constitutive equations are obtained,
the e;ective computation of which are then discussed (see Section 5). Finally, in
Section 6, simple considerations on those constitutive equations show that in some
cases, the equivalent continuum may be modeled by an anisotropic power law <uid.
For the sake of simplicity, the problem is exposed in the case of a planar &ber net,

but, as it will be clear in the equations, the extension to a three dimensional problem
would be straightforward.

1.1. Notations

Boldface symbols denote tensors, the order of which is indicated by the correspond-
ing number of underlinings. Dots and colons are used to indicate tensor products
contracted over one and two indices respectively. In the usual Cartesian frame, this
leads to

a · b= aibi; (a · b)i = aijbj;

(a · b)ij = aikbkj; (a : b) = aijbji

using Einstein’s summation convention over repeated indices.
Tensorial product is denoted by the symbol ⊗, e.g.:

(a ⊗ b)ij = aibj; (a ⊗ b)ijk = aijbk :

The gradient of a vector a with respect to space variables xi will be denoted ∇a and
de&ned as

(∇a)ij = 9ai
9xj

:

The same convention will be used for higher order spatial derivatives, e.g.:

(∇a)ijk = 92ai
9xj9xk

:
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Fig. 1. Discrete and periodic description of the &ber net, example of reference cell.

2. Discrete description and microscopic modelling

2.1. Basic assumptions

The structure under consideration is a planar net made of rigid cylindrical &bers of
uniform length l, that will be called bars. The plane is characterized by the Cartesian
reference frame R
 = (O; e1; e2), where O is an arbitrary reference point (see Fig. 1).
The discrete homogenization technique we propose requires two further assumptions.

The &rst assumption is that the structure may be considered as periodic. Thus the
&ber net is regarded as an assembly of identical cells as shown in Fig. 1, which are
characterized by the two vectors of R
, d1 and d2, called periodicity vectors. The &ber
net dimensions are therefore L1 and L2 which are such that

L1 = N1‖d1‖ and L2 = N2‖d2‖; (1)

where N1 is the number of cells in the d1 direction and N2 the number of cells in the
d2 direction.
The second assumption is that the &ber net is made of a huge number of cells Nc,

so that the scale separation parameter �, de&ned as

�=
1√
Nc

�1; (2)

may be considered as a very small parameter. Condition (2) is equivalent to the fol-
lowing, and so can have another meaning:

�=

√
s
S
=

d
L
�1; (3)

where s and S are respectively the surface of one cell and the surface of the whole
&ber net, d=

√
s represents the characteristic length of the microstructure and L=

√
S
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is the characteristic length of the whole net. Let us assume that d has the same order
of magnitude as the length of &bers. Condition (3) is therefore a condition of scale
separation; it implies that the size of the &ber net should be large in comparison with
the size of &bers.

2.2. Numbering system

The net of &bers is made of a discrete set of rigid bars. Each bar is supposed to be
linked to the rest of the net by one or several interactions, located at the contacting
point between two &bers. The geometry and topology of the net is therefore entirely
de&ned by the spatial and angular position of each &ber, and by the connectivity of
each &ber with the rest of the assembly.
Centers of cells are &rst located by a vector of integers a whose components are

(a1; a2). Their positions are located by vectors p
0
(a) (see Fig. 1):

p
0
(a) = a1d1 + a2d2: (4)

The assumption of periodicity then suggests a system of numbering of bars and links
re<ecting the regularity of the microstructure. Each bar of the net is numbered by
b̃=(b; ab̃), which means that the bar b̃ is the bth bar of the cell ab̃. The set all bars of
the net is denoted B.
In the same way, the action of the bar c̃ on the bar b̃ is denoted either by k̃ =(c̃=b̃)

or by k̃ = (k; ak̃), the set of connections of the net being denoted C. Bars b̃ and c̃ can
respectively be considered as the interior and the exterior of the interaction k̃, so the
following notation will be used:

b̃= I(k̃); c̃ = E(k̃) and so k̃ = (E(k̃)=I(k̃)): (5)

We will consider that the cell to which k̃ belongs is the belonging cell of the bar
on which the action is exerted, i.e. the bar b̃ = I(k̃), so that ak̃ = ab̃. The reciprocal
interaction (b̃=c̃) will be denoted t k̃ = (tk; a

t k̃) and will therefore belong to the cell ac̃.
In the notations b̃ = (b; ab̃) and k̃ = (k; ak̃), integers b and k are the numbers of bars
and connections in a reference cell the sets of which are denoted BR and CR.
In this work, we will assume that the size of cells d is about the same order as the

length of &bers l, and that d¿l. This implies that interactions can take place only
between two &bers of the same cell or between &bers of two neighboring cells. The
exterior of the connection k̃ = (k; ak̃) will therefore be located in the cell ak̃ or in a
neighboring one. Anyway, it will belong to the cell ak̃ + �k , where �k is a vector of
integers whose components take their values in {−1; 0;+1}. Notice that the periodicity
assumption causes �k to be independent of the position of the cell.

2.3. Geometrical description

As illustrated in Fig. 2, the position of a bar b̃ is de&ned by the position of its center
Pb̃, located by the vector p(b̃)=OPb̃, and by its unit vector eb̃. The periodicity of the
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Fig. 2. Locating and kinematics of &bers in the planar case.

net implies that p(b̃) can be partitioned as

p(b̃) = p(b; ab̃) = p
0
(ab̃) + �pb

1
= a1d1 + a2d2 + �pb

1
; (6)

where p
0
(a) is the macroscopic position of the belonging cell of b̃ in the &ber net, and

�pb
1
is the local position of bar b in that cell. It is to be noted that pb

1
only depends on

the considered bar b and not on the macroscopic position for the net is assumed to be
perfectly periodic. Some extension to this restriction could be achieved by considering
a quasi-periodic &ber net, as done by Tollenaere and Caillerie (1998), but is not in the
scope of this paper, which is only interested in obtaining the equivalent continuum’s
constitutive equations.
Vectors d i are small compared to the size L of the net, so they can be written as

d i = �	i where the vectors 	i are macroscopic vectors, independent of �. Let us now

introduce the pseudo continuous variable 
b̃ de&ned by 
b̃ = (�1; �2) = �ab̃. According
to this notation, Eq. (6) becomes

p(b̃) = �1	1 + �2	2 + �pb
1
= p

0
(
) + �pb

1
: (7)

As illustrated in Fig. 3, macroscopic positions of bars are now parameterized by the
vector of reals 
 which is a variable of � ⊂ [0; 1]×[0; 1]. � is the reference parametric
space, where the net is made of square cells of size �. As � is assumed to tend to zero
in the use of asymptotic expansion methods, 
 tends to become, and will be used as a
continuous variable, even if, strictly speaking, it only takes values such as 
 = �a for
a &nite value of �.
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Fig. 3. Parameterization of the geometry of the &ber net. Discrete description in the physical space; continuous
description in the parametric space.

Let us introduce G , the gradient ∇p
0
of the geometrical transformation 
 �→ p

0
(
).

According to Eq. (7), the components of G relative to ei ⊗ ej can be expressed as

Gij = (	i · ej) (8)

and the Jacobian g of the transformation is

g= detG = ‖	1 ∧ 	2‖: (9)

2.4. Local kinematics and interactions

The problem being planar in R
 and &bers being considered as rigid bars, their
motion is a rigid body planar motion. Kinematics of a bar b̃ can therefore be de&ned
by:

• the velocity of its center Pb̃, denoted C(b̃)
• its angular velocity !(b̃) = !(b̃)e3, where e3 is the unit vector normal to the plane

of &bers.
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Fig. 4. Locating of a contacting point along a bar b̃.

The velocity of a point Q of bar b̃ is then

Cb̃(Q) = C(b̃) + !(b̃) ∧ Pb̃Q = C(b̃) + !(b̃) ∧ �eb; (10)

where � is the curvilinear abscissa of Q on the bar b̃ with respect to the center Pb̃

as shown in Fig. 4. � is a small variable; its order of magnitude is about the size of
the cell d so it can be written as �= d�= �L�, where � is independent of the size of
the problem L. In the following, it will be convenient to introduce the new variable
�= L!, which enables us to rewrite Eq. (10) as

Cb̃(Q) = C(b̃) + ���(b̃) ∧ eb: (11)

The action k̃ of bar E(k̃) on bar I(k̃) is supposed to take place at a point and to be of
non-linear viscous type, due to the relative velocities of both bars at their contacting
point. In this paper, we will consider the case where those interactions follow a power
law of the relative velocities. The interaction k̃ can therefore be partitioned into:

• a force f k̃ proportional to the di;erence of velocity of the two bars �Ck̃ at their

contacting point, denoted Qk̃ :

f k̃ =  k‖�Ck̃‖m−1�Ck̃ ; (12)

where the power law index m is a real scalar ranging from 0 to 1. By de&nition, �Ck̃
equals the di;erence CE(k̃)(Qk̃)− CI(k̃)(Qk̃), so making use of Eq. (11), its expression
reads

�Ck̃ = C(E(k̃))− C(I(k̃)) + �(�
tk�(E(k̃)) ∧ eE(k) − �k�(I(k̃)) ∧ eI(k)): (13)

In the last equation, �k (resp. �
tk) is the normalized local abscissa of Qk on the bar

b̃= I(k̃) (resp. c̃ = E(k̃)).
• a moment M k̃(Qk̃) relative to Qk̃ , proportional to the di;erence of angular velocities

of both bars:

M k̃(Qk̃) = Bk‖�!k̃‖m−1�!k̃ ; (14)

where �!k̃ denotes the di;erence of angular velocities !(E(k̃))− !(I(k̃)).
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In order to normalize moments with respect to forces, vectors mk̃(Qk̃), such asM k̃(Qk̃)=
Lmk̃(Qk̃), will be used. In the following, they will also be called moments, even if
they are homogeneous to forces. The moment interaction law can then be rewritten as

mk̃(Qk̃) = #k‖��k̃‖m−1��k̃ ; (15)

where #k = Bk=Lm+1. The moment of action k̃ expressed at point Pk̃ , the center of bar
I(k̃), will be denoted mk̃ and will have the following expression:

mk̃ = #k‖��k̃‖m−1��k̃ + ��keI(k̃) ∧ f k̃ : (16)

In Eqs. (12) and (15), the coeHcients  k and #k are respectively called translational
and rotational viscosity. According to the assumption of periodicity, they only depend
on the considered interaction k inside the reference cell. Those viscosities are chosen
such that

 k = �1−m k0 (17)

and

#k = �1+q−m#k0 ; (18)

where  k0 and #k0 are strictly positive real scalar constants of same order of magnitude
and where the parameter q is a real number, characteristic of the relative order of
magnitude of #k with respect to  k . In the following, only cases where q¿ 0 will be
examined, for situations where #k would be much greater than  k are not physically
likely to happen in the considered suspensions. For simplicity, three cases will be
discussed. They may represent three di;erent situations one might expect when studying
a speci&c application:

• Case 1: q=0, rotational viscosities have the same order of magnitude as translational
ones.

• Case 2: q=1, rotational viscosities are “quite” small compared to translational ones.
• Case 3: q= 1 + m, rotational viscosities are very small or negligible.

As it will be clear in the following (see Section 5.3), cases where q = 1 + m + j, j
being a strictly positive integer are equivalent to Case 3 with #k0 = 0, so the results
that will be drawn in Case 3 will also apply to such physical situations.
The analysis of intermediate cases, where q is a real positive number, was also

carried out. They were shown to lead to three types of macroscopic descriptions (i.e.
equivalent continua) which are identical to the descriptions that can be deduced from
the analysis of the three proposed cases. The reader should therefore keep in mind that
results exposed in the following sections are not restrictive.

3. Upscaling process

At this stage, it is not possible to give an explicit formulation of forces and moments
in terms of the macroscopic velocity gradient of the suspension, as it is generally done
in the classical theory of &ber suspensions (Batchelor, 1971; Gibson and Toll, 1999).
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Such a process would require a further assumption on the velocity &elds relative to
each bar which is not required here. As it will be clear in the following, the upscaling
process used in our homogenization method will provide local forces and moments as
implicit functions of a macroscopic velocity gradient which might be assimilated to the
bulk velocity gradient of the suspension, as done in the previously cited works. But
this property will be a result of the homogenization process and not an assumption.

3.1. Asymptotic expansions

3.1.1. Velocity >elds
Taking advantage of the smallness of the parameter � and of the assumption of peri-

odicity, velocity and angular velocity &elds relative to a bar b̃ are expanded in discrete
asymptotic series expansion in powers of � (Moreau and Caillerie, 1995; Tollenaere
and Caillerie, 1998). Thus, they are written as

C(b̃) = Cb(
) = Cb0(
) + �Cb1(
) + �2Cb2(
) + · · · ; (19)

�(b̃) = �b(
) = �b
0
(
) + ��b

1
(
) + �2�b

2
(
) + · · · ; (20)

where functions Cbn and �b
n
are continuous functions of 
 that generally depend on the

bar b. 
 re<ects the macroscopic variation of those functions whereas index b is a local
variable, depending on the corresponding bar of b̃ in the reference cell.
For a pair of connected bars k̃ = (c̃; b̃), let us recall that b̃ is supposed to belong to

the cell located by 
, whereas c̃ may belong to a neighboring cell located by 
 + ��.
Thus C(c̃) = CE(k)(
 + ��k) is expanded using a Taylor expansion around 
, using the
fact that ��k is very small with respect to 
:

C(c̃) = CE(k)(
 + ��k)

= CE(k)(
) + �∇CE(k)(
) · �k + �2
1
2!

∇CE(k)(
) : [�k ⊗ �k ] + · · · : (21)

Carrying asymptotic expansion (19) into Eq. (21) and identifying each order of powers
of �, the expansion of C(c̃) reads

C(c̃) = CE(k)(
 + ��k) = CE(k)0 (
) + �(CE(k)1 (
) +∇CE(k)0 (
):�k)

+ �2
(
CE(k)2 (
) +∇CE(k)1 (
):�k +

1
2!

∇CE(k)0 (
) : [�k ⊗ �k ]
)
+ · · · : (22)

The expansion of the angular velocity �(c̃) is obtained exactly in the same manner.

3.1.2. Velocity di?erence >elds
In the same way, velocity di;erences �Ck̃(13) and ��k̃ = �E(k̃) − �I(k̃) can be

expanded:

�Ck̃ =�Ck
0
+ ��Ck

1
+ �2�Ck

2
+ · · · ;

��k̃ =��k
0
+ ���k

1
+ �2��k

0
+ · · · : (23)
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By substituting expansion (19) into Eq. (13), and making use of Taylor expansions
(22), velocity di;erences �Ck

i
can be identi&ed at each order of powers of �. For the

two &rst orders (�0 and �1), we obtain

�Ck
0
= CE(k)0 (
)− CI(k)0 (
); (24)

�Ck
1
= CE(k)1 (
)− CI(k)1 (
) + �

tk�E(k)
0

(
) ∧ eE(k) − �k�I(k)
0

(
) ∧ eI(k)

+∇CE(k)0 (
) · �k : (25)

For the two &rst orders of angular velocities di;erence, one obtains

��k
0
= �E(k)

0
(
)− �I(k)

0
(
); (26)

��k
1
= �E(k)

1
(
)− �I(k)

1
(
) +∇�E(k)

0
(
) · �k : (27)

3.2. Equilibrium of the net

In the scope of this paper, inertia e;ects will be neglected and no external forces or
torques will be supposed to act on bars of the net. Therefore, the equilibrium equations
of a given bar b̃ can be described by the two following sets of equations:

∀b̃;
∑

k̃∈C(b̃)

f k̃ = 0 and
∑

k̃∈C(b̃)

mk̃ = 0 ; (28)

where C(b̃) is the set of connections of bar b̃.
The expansion of equilibrium equations of the whole &ber net can be simpli&ed

by the use of a virtual power formulation. This technique, developed by Moreau and
Caillerie (1995) and Tollenaere and Caillerie (1998) enables the macroscopic behavior
to be obtained fast and avoids the need to consider expansions of the equilibrium
equations at higher orders of powers of �. Thus using two sets of virtual &elds denoted
(� and ’), problem (28) is equivalent to the following virtual formulation:

∀(�(b̃);’(b̃));
∑
b̃

∑
k̃∈C(b̃)

f k̃ · �(b̃) +mk̃ · ’(b̃) = 0: (29)

Within such a summation, it can be noticed that if the connection k̃ = (c̃=b̃) belongs
to C(b̃), connection t k̃ = (b̃=c̃) belongs to C(c̃). Summation on the bars can therefore
be transformed into a summation on the set of connected pairs (c̃=b̃) such that c̃¿ b̃.
Doing so, formulation (29) can rewritten as

∀(�(b̃);’(b̃));

∑
k̃=(c̃;b̃)
c̃¿b̃


 f k̃ · (�(E(k̃))− �(I(k̃))) +mk̃ · (’(E(k̃))− ’(I(k̃)))

− �Lk ∧ f k̃ · ’(E(k̃))


= 0: (30)
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This last equation was obtained using the action and reaction theorem which in this
case can be shown to imply

f k̃ + f
t k̃ = 0 and mk̃ +m

t k̃ − �Lk ∧ f k̃ = 0 ; (31)

where vector �Lk denotes the vector Pb̃Pc̃ and is therefore de&ned as

�Lk = p(c̃)− p(b̃) = �(G · �k + pc
1
− pb

1
): (32)

3.3. From discrete to continuous

Suppose that ub̃ is any vectorial &eld of the spatial variable 
 with the following
two properties:∑

b̃∈B

ub̃ =
∑
a

∑
b∈BR

ub;

ub̃(
) = �2ub0(
) +O(�3):

Then it can be shown that when � tends to zero, we have

lim
�→0

∑
b̃∈B

ub̃ =
∫
�

∑
b∈BR

ub0(
); (33)

using the de&nition of integrals by Riemann sums as detailed in Moreau (1996). The
latter property is important and will often be used in the following developments. It
enables us to transform the discrete problem into a continuous one.

3.4. Self-equilibrium at the lower orders

In a &rst stage let us assume that both order zero velocities Cb0 and angular velocities
�b
0
actually depend on the considered bar, so that order zero velocity di;erences �Ck

0

and ��k
0
are non null functions.

3.4.1. Self-equilibrium of forces
According to asymptotic expansions (23), expressions such as ‖�Ck̃‖m−1 have an

asymptotic expansion of the following form:

‖�Ck̃‖m−1 = ‖�Ck
0
+ ��Ck

1
+ �2�Ck

2
+ · · · ‖m−1

= ‖�Ck
0
‖m−1

(
1 + �(m− 1)

�Ck
0
· �Ck

1

‖�Ck
0
‖2 + · · ·

)
: (34)
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Subsequently, at this stage, the asymptotic expansions of interaction forces, de&ned by
Eq. (12), can be written as

f k̃ = �1−m k0‖�Ck0‖m−1

[
�Ck

0
+ �

(
�Ck

1
+ (m− 1)

�Ck
0
· �Ck

1

‖�Ck
0
‖2 �Ck

0

)
+ · · ·

]
: (35)

Their asymptotic expansion may therefore be written in the following way:

f k̃ = �2−m
(
1
�
f k−1

+ f k
0
+ �f k

1
+ · · ·

)
(36)

with, at the lower order of � powers,

f k−1
=  k0‖�Ck0‖m−1�Ck

0
: (37)

Taking into the virtual power formulation (30) virtual velocity &elds �(b̃) and ’(b̃)
such that

∀b̃; �(b̃) = �1+m&1(
)�b and ’(b̃) = 0 (38)

then carrying into Eq. (30) asymptotic expansions (36) and making use of property
(33), we obtain, when � tends to 0:

∀(&1(
); �b);
∫
�

∑
k∈CR

f k−1
· (�E(k) − �I(k))&1(
) d�= 0: (39)

This relation being veri&ed for any continuous function &1, forces of the lower order
are solution of the lower order self-equilibrium equation of the reference cell:

∀�b;
∑
k∈CR

f k−1
· (�E(k) − �I(k)) = 0: (40)

Then carrying into this last equation the constitutive relationship (37), we obtain a
relation that must be satis&ed by the &rst order velocities of bars in the reference cell.
Velocities Cb0 are actually solutions of the problem

∀�b;
∑
k∈CR

 k0‖CE(k)0 − CI(k)0 ‖m−1(CE(k)0 − CI(k)0 ) · (�E(k) − �I(k)) = 0: (41)

In the special case where �b = Cb0, one checks that order zero velocities have to satisfy
the condition∑

k∈CR

 k0‖CE(k)0 − CI(k)0 ‖m+1 = 0: (42)

Translational viscosities being strictly positive quantities, Eq. (42) means that all the
bars of the same cell have the same linear velocity at the macroscopic scale:

∀b∈BR; Cb0(
) = C0: (43)

According to such a property, we also deduce that

∀k ∈CR; f k−1
= 0: (44)
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Such a result is however inconsistent with the asymptotic expansion (36) proposed for
interaction forces which was based on the assumption that �Ck̃

0
�= 0. Actually, according

to property (43), expressions such as ‖�Ck̃‖m−1 have an asymptotic expansion of the
form:

‖�Ck̃‖m−1 = �m[‖�Ck
1
‖m−1 + �(m− 1)‖�Ck

1
‖m−3(�Ck

1
· �Ck

2
) + · · · ]: (45)

Subsequently, asymptotic expansions of interaction forces can be written as

f k̃ = �(f k
0
+ �f k

0
+ �2f k

0
+ · · ·) (46)

with, at order �0,

f k
0
=  k0‖�Ck1‖m−1�Ck

1
; (47)

�Ck̃
1
= CE(k)1 − CI(k)1 +∇C0 · �k + �

tk�E(k)
0

∧ eE(k) − �k�I(k)
0

∧ eI(k): (48)

3.4.2. Self-equilibrium of moments
In the assumption of non null order zero angular velocities, by substituting (46) and

expansion (23) into the interaction law (16), one obtains the following expansion of
interaction moments:

mk̃ = �1+q−m#k0[‖��k0‖
m−1��k

0

+ �(‖��k
0
‖m−1��k

1
+ (m− 1)‖��k

0
‖m−3(��k

0
· ��k

1
)��k

0
) + · · · ]

+ �2�keI(k̃) ∧ (f k
0
+ �f k

1
+ �2f k

0
+ · · ·): (49)

Let us now distinguish the three cases mentioned in Section 2.4.
Cases 1 and 2 can be treated in the way as was done for forces. Taking into the

virtual power formulation of equilibrium (30) virtual velocity &elds �(b̃) and ’(b̃) such
that

∀b̃; �(b̃) = 0 and ’(b̃) = �1+m−q&2(
)’b (50)

and then carrying into Eq. (30) asymptotic expansions (49), making use again of
property (33), we obtain, when � tends to 0

∀(&2(
);’b);
∫
�

∑
k∈CR

#k0‖��k0‖
m−1��k

0
· (’E(k) − ’I(k))&2(
) d�= 0: (51)

According to property (33), all the higher order terms vanish when � tends to zero.
The last relation being veri&ed for any function &2, order zero angular velocities are
then shown to solve the following self-equilibrium problem on the reference cell:

∀’b;
∑
k∈CR

#k0‖�E(k)
0

− �I(k)
0

‖m−1(�E(k)
0

− �I(k)
0

) · (’E(k) − ’I(k)) = 0: (52)
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This problem is strictly equivalent to the problem satis&ed by order zero velocities so,
for cases 1 and 2, we also obtain

∀b∈BR; �b
0
(
) = �

0
: (53)

No such simple conclusion can be drawn in case 3, and order zero angular veloci-
ties should actually depend on the considered bar b in the reference cell. However,
asymptotic expansions of moments are now expressed as described in Eq. (49), but
the exponent 1 + q − m now equals 2. For the three cases, asymptotic expansions of
moments thus can be written as

mk̃ = �(mk
0 + �mk

1 + �2mk
2 + · · ·) (54)

with the following expressions of &rst order terms:

• Case 1:

mk
0 = #k0‖��k1‖

m−1��k
1
; (55)

��k
1
= �E(k)

1
− �I(k)

1
+∇�

0
· �k : (56)

• Case 2:

mk
0 = 0; mk

1 = #k0‖��k1‖
m−1��k

1
; (57)

��k
1
= �E(k)

1
− �I(k)

1
+∇�

0
· �k : (58)

• Case 3:

mk
0 = 0; mk

1 = #k0‖��k0‖
m−1��k

0
+ �keI(k̃) ∧ f k

0
; (59)

��k
0
= �E(k)

0
− �I(k)

0
: (60)

4. Equilibrium of the equivalent continuum

Before detailing the obtaining of the equivalent continuum of the &ber net, let us
recall some fundamental results from the mechanics of continuous media with internal
rotation. The equivalent continuous description deduced from the discrete homogeniza-
tion process will actually prove to be consistent with such general results.

4.1. Continuous media with internal rotation

A medium for which microscopic kinematics may imply rotational motion such as
granular materials, foams or &ber suspensions, may be considered as a Cosserat medium
(Cosserat and Cosserat, 1909), or more generally as a continuous medium with internal
rotations. Local kinematics of such a medium is characterized by a velocity &eld C(x)
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and an angular velocity &eld �(x) and, as described by Eringen (1968) and Germain
(1973), the virtual power formulation of its equilibrium reads

∀(C∗;�∗); −
∫
'
(� :∇C∗ + � · �∗ + � : ∇�∗) d'

+
∫
'
(f · C∗ + c · �∗) d' = 0; (61)

where C∗ and �∗ are virtual velocity and angular velocity &elds. In Eq. (61), � rep-
resents the stress tensor, � the couple-stress tensor (due to local rotations) and � the
micro-stresses vector. Vectors f and c respectively denote the external volume forces
and moments. The principle of objectivity causes � to be directly linked to � by the
relation:

�= e : � = e : �A (62)

tensor e being the permutation tensor whose de&nition is given in Appendix A and

�A is the antisymmetric part of �. Then by splitting ∇C∗ into its symmetric and
antisymmetric parts D∗ and R∗ and accounting for relation (62), formulation (61) may
also be rewritten as

∀(C∗;�∗); −
∫
'
(�S :D∗ + �A : (R∗ − e · �∗) + � :∇�∗) d'

+
∫
'
f · C∗ + c · �∗ d' = 0: (63)

Such a formulation leads to the following local equilibrium equations:

div (�S + �A) + f = 0 ; div � + e : �A + c = 0 (64)

and implies, for a viscous material, constitutive equations of the generic type:

�S =S(D;R− e · �;∇�);

�A =A(D;R− e · �;∇�);

� =K(D;R− e · �;∇�): (65)

In the special case where � and external moments c actually happen to be null or
negligible, ∇� no longer in<uences the behavior. It is then clear from Eqs. (64) that
vector e · �A is also null or negligible. In such a case, constitutive equations (65)
simplify to

�S =S(D;R− e · �); (66)

�A =A(D;R− e · �) = 0: (67)

The symmetry condition (67) then provides a new relation that theoretically enables
R− e ·� to be expressed as a function F of the strain rate tensor D. The stress tensor
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may therefore be expressed as a function of D only:

� = �S =S(D;F(D)) = �(D): (68)

4.2. Equilibrium of the >ber net

For the &ber net, assuming that external forces and moments are null, the virtual
power formulation of the equivalent continuum is obtained by taking in formulation
(30) smooth “macroscopic” virtual velocity &elds � and ’ such that

∀b̃; �(b̃) = �0(
) and ’(b̃) = ’
0
(
): (69)

Then when � tends to zero, using Eq. (33), forces and moments can be shown to be
solutions of the problem:

∀(�0;’0
);∫

�

∑
k∈CR

[f k
0
· (∇�0 · �k) +mk

0 · (∇’0
· �k)− Lk ∧ f k

0
· ’

0
] d�= 0 (70)

which, using the property (a · b) · c = b⊗ c : a, can also be written as

∀(�0;’0
);

∫
�
[S0 :∇�0 +M 0 :∇’0

+ Z0 · ’0
] d�= 0: (71)

In this last formulation, the following stress tensors, de&ned in the parametric space
�, were introduced:

S0 =
∑
k∈CR

�k ⊗ f k
0
; (72)

M 0 =
∑
k∈CR

�k ⊗mk
0; (73)

Z0 =
∑
k∈CR

f k
0
∧ Lk : (74)

The formulation of the macroscopic equilibrium of the net in terms of the velocity
gradients in the physical space are simply obtained by making the change of variables

 �→ p

0
(
) in formulation (71). According to de&nition (8), the relation between the

gradient of a vectorial &eld u with respect to 
, denoted ∇u, and its gradient with
respect to x= p

0
, denoted ∇xu, is given by

∇u =∇xu · G : (75)

The macroscopic equilibrium of the &ber net in the physical space then reads

∀(�0;’0
);

∫
'
[�0 :∇x�0 + �0 :∇x’0

+ �
0
· ’

0
] dx = 0: (76)
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This last problem is the virtual power formulation of the equilibrium of a Cosserat
continuous medium without any external forces or moments, as detailed in Section 4.1.
Its local equilibrium is governed by the following balance equations:

div �0 = 0 ;

div �0 − �0 = 0: (77)

Therefore, the state of stresses inside the &ber net is de&ned by the three following
tensors:

�0 = g−1G · S0: stress tensor;

�0 = g−1G ·M 0: couple stress tensor;

�
0
= g−1Z0: micro-stresses vector: (78)

In accordance with the general theory of Cosserat media exposed in Section 4.1, the
macroscopic stress tensor �0 is non symmetric, and its antisymmetric part is directly
linked to �

0
by the relation

�
0
= e : �0 = e : �A0 : (79)

This general property of Cosserat media can easily be checked in the case of the &ber
net problem, as shown in Appendix A.
As visible in Eqs. (78) and (72)–(74), the state of stress of the equivalent continuum

happens to be directly related to &rst order interaction forces and moments. The sti;ness
of the &ber net will therefore by closely linked to its density of connections. This
remark is consistent with the results obtained by Servais et al. (1999) in the case
where dry friction between &bers may be neglected as well as local moments.

5. Constitutive equations of the equivalent continuum

As Eqs. (72)–(74) show, the determination of the macroscopic state of stress
(�0; �0; �0) in the &ber net requires the determination of forces and moments of order

�0, f k
0
and mk

0. Nevertheless, with the chosen local interaction relations, those quantities

directly depend on the value of kinematic variables Cb1, �
b
0
and �b

1
, as well as on the

macroscopic velocity gradient ∇C0. To fully determine the constitutive equations cor-
responding to the three cases de&ned in Section 2.4, further equilibrium formulations
are required in order to enable the determination of local kinematic variables.
Such formulations will necessarily depend on the local interaction laws. Here again,

one has to distinguish three cases, depending on the relative magnitude of rotational
viscosity #k with respect to translational one  k , characterized by the parameter q (see
Section 2.4).
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5.1. Case 1: q= 0

According to results (43) and (53), order zero interaction laws become

f k
0
=  k0‖�Ck1‖m−1�Ck

1
; (80)

mk
0 = #k0‖��k1‖

m−1��k
1

(81)

with

�Ck
1
= CE(k)1 − CI(k)1 + �

0
∧ (�

tkeE(k) − �keI(k)) +∇C0 · �k ; (82)

��k
1
= �E(k)

1
− �I(k)

1
+∇�

0
· �k : (83)

Carrying into the general equilibrium formulation (30) the virtual functions

�(b̃) = �&1(
)�b and ’(b̃) = �&2(
)’b (84)

and making � tend to zero, one gets

∀(&1; �b); ∀(&2;’b);∫
�

∑
k∈CR

f k
0
· (�E(k) − �I(k))&1 d�+

∫
�

∑
k∈CR

mk
0 · (’E(k) − ’I(k))&2 d�= 0: (85)

This relation being satis&ed for all &elds &1 and &2, forces f
k
0
and moments mk

0 are
solutions of the problems:

∀�b;
∑
k∈CR

f k
0
· (�E(k) − �I(k)) = 0; (86)

∀’b;
∑
k∈CR

mk
0 · (’E(k) − ’I(k)) = 0: (87)

Formulations (86) and (87) are respectively force and moment order zero self-equilibrium
equations. They are strictly equivalent to the following non-linear systems:

∀b∈BR;
∑

k∈C(b)

f k
0
(CE(k)1 ; CI(k)1 ;�

0
;∇v0) = 0 ; (88)

∀b∈BR;
∑

k∈C(b)

mk
0(�

E(k)
1

;�I(k)
1

;∇
0) = 0: (89)

Constitutive equations of the equivalent continuum can then be calculated considering
as given the macroscopic &elds ∇C0, ∇�0

and �
0
. The computation gives velocities

Cb1 and �b
1
as functions of ∇C0, ∇�0

and �
0
, then Eqs. (72)–(74) and (78) give �0, �0

and �
0
in terms of those &elds, which provides constitutive laws. Such a computation

obviously requires a numerical implementation of problems (88) and (89). This will
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explicitly provide the macroscopic stress tensors as functions of the macroscopic &elds
and can be achieved by the use of any suitable numerical methods for non-linear
systems. Subsequently, in case 1, according to local behavior equations (80)–(83), the
equivalent continuum is a general Cosserat medium whose constitutive relationships
are of the following type:

�0 = �0(∇C0;�0
);

�0 = �0(∇�0
);

�
0
= e : �A0 = �0(∇C0;�0

) (90)

which is consistent with the general formulation (65) obtained by continuous media
theory (see Section 4.1).

5.2. Case 2: q= 1

In this case, as shown in Section 3.4 order zero moments are null. The macro-
scopic couple-stress tensor �0 is therefore automatically null, and from Eqs. (77), the
micro-stresses vector �

0
is also null. Property (79) then immediately causes the anti-

symmetric part of the macroscopic stress tensor to be null. Thus, the equilibrium of the
equivalent continuum does not imply any local moment and �0 is a symmetric tensor.

In this case, the only constitutive equation to determine is therefore Eq. (72), which
only requires the determination of forces f k

0
. Thanks to property (53), their expression

is the same as in case 1; they are de&ned by Eq. (80), with �Ck
1
given by Eq. (82).

Then, adopting the same technique as in case 1, order zero forces f k
0
can be proved to

solve the self-equilibrium (86), which is strictly equivalent to the following non-linear
system:

∀b∈BR;
∑

k∈C(b)

f k
0
(CE(k)1 ; CI(k)1 ;�

0
;∇C0) = 0: (91)

Furthermore, property (79) implies an additional relation on forces f k
0
which reads∑

k∈C(b)

f k
0
(CE(k)1 ; CI(k)1 ;�

0
;∇C0) ∧ (G · �k) = 0: (92)

This last relation shows that �
0
can theoretically be expressed as a function of ∇C0.

One then notices that Eqs. (91) and (92) enable Cb1 and �
0
to be calculated in terms of

the macroscopic &eld ∇C0. Here again, an explicit determination of the macroscopic
stress tensor �0 can be achieved by the numerical solution of the non-linear system
formed by both equations.
Finally, in this case, the &ber net’s equivalent continuous medium happens to be

analogous to the special case of the continuous medium discussed in Section 4.1,
governed by the classical local equilibrium equation

div �0 = 0 (93)
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with a constitutive equation of the type

�0 = �0(∇C0;�0
(∇C0)); (94)

where �0 is a symmetric tensor. The relation between �
0
and ∇C0, is obtained in an

implicit way by ensuring the symmetry condition.
Furthermore, in accordance with the general theory, because of the symmetry of �0,

only the symmetric part of the macroscopic velocity gradient ∇C0 contributes to the
total dissipated mechanical power. This causes �0 to depend only on the macroscopic
strain rate D0, de&ned as

D0 =
1
2
(∇C0 + t∇C0): (95)

So in Eq. (94) ∇C0 may be replaced by D0 and the equivalent continuum exhibits a
general <uid-like behavior.

5.3. Case 3: q= 1 + m

In this case, moments of order 0 are immediately null, which causes �0 and �
0

to be null. As in case 2, the equivalent continuum is a Cauchy medium, governed
by local balance equation (93), and the stress state is de&ned by the single tensor
�0. Its determination, according to Eq. (72), requires the determination of order zero
interaction forces f k

0
.

Here again, the set of self-equilibrium formulations (86) and (87) can be obtained
by the same process as in the two previous cases, but Eq. (87) no longer brings further
information on order zero angular velocities �b

0
. Those variables now depend on the

considered bar in the reference cell.
Forces f k

0
are therefore de&ned by

f k
0
=  k0‖�Ck1‖m−1�Ck

1
(96)

with

�Ck
1
= CE(k)1 − CI(k)1 + �

tk�E(k)
0

∧ eE(k) − �k�I(k)
0

∧ eI(k) +∇C0 · �k : (97)

They solve Eq. (86), which is equivalent to the non-linear-system:

∀b∈BR;
∑

k∈C(b)

f k
0
(CE(k)1 ; CI(k)1 ;�E(k)

0
;�I(k)

0
;∇C0) = 0 ; (98)

the unknowns of which are now Cb1 and �b
0
. It therefore brings 2 equations per bar

whereas 3 unknowns per bar are to be determined, ∇C0 being considered as data.
It is to be noted that in this case, order one moments mk

1, de&ned by

mk
1 = #k0‖�E(k)

0
− �I(k)

0
‖m−1(�E(k)

0
− �I(k)

0
) + �keI(k̃) ∧ f k

0
(99)

imply the same kinematic variables as f k
0
.

The missing equations thus can be obtained by taking in Eq. (30) the virtual functions
�(b̃)=0 and ’(b̃)=&2(
)’b leading to the moments order one self-equilibrium following
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formulation:

∀’b;
∑
k∈CR

mk
1 · (’E(k) − ’I(k)) + Lk ∧ f k

0
· ’E(k) = 0: (100)

Making use of the action-reaction theorem (31), this equation can be transformed and
proved to be equivalent to a new non-linear system, which reads

∀b∈BR;
∑

k∈C(b)

mk
1(C

E(k)
1 ; CI(k)1 ;�E(k)

0
;�I(k)

0
;∇C0) = 0: (101)

Vectors Cb1, and �
b
0
can therefore be computed by the simultaneous solving of Eqs.

(98) and (101) in terms of ∇C0, what will provide f k0, and then �0 in terms of this
macroscopic velocity gradient.
Finally, as in case 2, the &ber net’s equivalent continuous medium is also a classical

continuous medium governed by the local equilibrium equation (93), and its constitutive
equations are of the type:

�0 = �0(D0); (102)

where �0 is a symmetric tensor and D0 is the macroscopic strain rate tensor. Cases 2
and 3 &nally happen to lead to the same type of equivalent continuous medium, even
if the calculation of their constitutive equations leads to somewhat di;erent resolution
schemes. As mentioned above, it is now clear that case 3 also includes cases where
q = 1 + m + j, where j is any positive integer. In such cases, rotational viscosities
vanish from the macroscopic constitutive equations, and only the determination of the
translation one is required for a full solution of the problem.

6. Fundamental properties

In the case of the power law interaction relations (12) and (16) discussed in this
paper, further properties of constitutive equations can be drawn from results exposed
in the previous sections.
In a &rst stage, let us focus on case 3, where rotational viscosities are assumed to be

very small compared to translational ones. Self-equilibrium equations (98) and (101)
form a system that enables the calculation of local variables Cb1 and �b

0
in terms of

∇C0. Such a system can be summarized in the following way:

F(X;∇C0) = 0 ; (103)

where F is a vector that contains the force and moment equilibrium equations of each
bar of the reference cell, and X is a vector containing the kinematic unknowns Cb1 and
�b
0
relative to each bar. F is a block vector where blocks of components [3b− 2 : 3b],

relative to bar b, are denoted Fb and read

Fb =
∑

k∈C(b)

{
f k
0

mk
1

}
(104)
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whereas X may be assembled in blocks Xb such as

Xb =

{
Cb1
�b
0

}
: (105)

In the following, the uniqueness of the solution of problem (103) will be assumed.
Nevertheless, when internal mechanisms exist (isolated bars or isolated groups of bars)
this will not be the case anymore, but we will assume that the concentration regime is
suHciently high for every bar to be connected with some of its neighbors.
Let us now consider that X is the solution of Eq. (103) and that X̂ is the solution

of

F(X̂; &∇C0) = 0; (106)

where & is a non-null real scalar, and study the relation between X and X̂.

If Cb1, �
b
0
and Ĉb1, �̂

b

0
are the respective solutions of problems (103) and (106), forces

and moments solutions of Eq. (106) are then

f̂
k

0
=  k0‖�Ĉk1‖m−1�Ĉk

1
; (107)

m̂k
1 = #k0‖��̂

k

0
‖m−1��̂k

0
+ �keI(k̃) ∧ f̂ k

0
(108)

with

�Ĉk
1
= ĈE(k)1 − ĈI(k)1 + �

tk �̂
E(k)

0
∧ eE(k) − �k �̂

I(k)

0
∧ eI(k) + &∇C0 · �k ; (109)

��̂k
0
= �̂

E(k)

0
− �̂I(k)

0
: (110)

They can therefore be rewritten as

f̂
k

0
= &m( k0‖&−1�Ĉk

1
‖m−1&−1�Ĉk

1
); (111)

m̂k
1 = &m(#k0‖&−1��̂k

0
‖m−1&−1��̂k

0
+ �keI(k̃) ∧  k0‖&−1�Ĉk

1
‖m−1&−1�Ĉk

1
): (112)

Carrying Eqs. (111) and (112) in Eq. (106) and according to the expression of vector
F, one checks that X̂ is solution of the problem:

&mF(&−1X̂;∇C0) = 0 ⇔ F(&−1X̂;∇C0) = 0: (113)

The uniqueness of the solution then immediately causes

X̂ = &X: (114)

Subsequently, forces and moments resulting from problem (106) are such that

f̂
k

0
= &mf k

0
and m̂k

1 = &mmk
1; (115)

where f k
0
and mk

1 result from the initial problem (103).
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Now forming the macroscopic stress tensors �̂0 and �0 de&ned by Eqs. (78) and
(72) corresponding to both problems &nally leads to

�̂0 = &m�0: (116)

This result therefore enables one to deduce the following important property:

∀&∈R; �0(&D0) = &m�0(D0): (117)

The macroscopic stress tensor is a homogeneous function of degree m of the macro-
scopic strain rate tensor. Such a result shows that, in case 3, the equivalent continuum
is a power law <uid, with a strain rate sensitivity equal to the strain rate sensitivity
postulated at the level of interactions between &bers. Actually, if one de&nes a norm
‖:‖eq in the space of second order tensors, property (117) enables us to write the
following relation, characteristic of power law <uids:

�0(D) = �0

(
‖D‖eq :

D

‖D‖eq

)
= ‖D‖meq�0

(
D

‖D‖eq

)
: (118)

The same property can be deduced for case 2, thanks to interaction relation (80) and
admitting the uniqueness of the system formed by Eqs. (91) and (92).
In case 1, macroscopic &elds ∇C0 and �

0
(directly linked to ∇�

0
) can be imposed

separately so no such simple property can be deduced. However, as evident from
the interaction relations (80) and (81), and from the formulation of self-equilibrium
problems (88) and (89), the following property can be written:

∀&∈R;
�0(&∇C0; &�0

) = &m�0(∇C0;�0
);

�
0
(&∇C0; &�0

) = &m�
0
(∇C0;�0

);

�0(&∇�0
) = &m�0(∇�0

): (119)

The equivalent Cosserat medium exhibits a degree m homogeneity property in terms
of the pairs (∇C0;�0

).

7. Conclusions

This theoretical work on the behavior of a net of rigid &bers linked by punctual
power law &ber–&ber interactions shows several interesting results.
If the scale separation assumption (3) is satis&ed in any practical application, an

equivalent continuous description of the behavior of the net is possible and its general
equilibrium equations are typical of a Cosserat continuous medium. The state of stress
of this medium is entirely de&ned by Eqs. (72)–(74) that explicitly provide the link
between the local forces and moments and the macroscopic stress tensors.
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Furthermore, the analysis of three di;erent &ber–&ber interaction laws leads to 2
main di;erent types of equivalent continuous media depending on the relative order of
magnitude of rotational viscosities with respect to the translational ones. If rotational
viscosities are of the same order of magnitude as translational ones, the &ber net is
actually equivalent to a Cosserat medium, its state of stress is given by the usual, but
non-symmetric, Cauchy stress tensor and by a couple stress tensor accounting for local
moments generated at &ber–&ber interactions. Such a case would probably be relevant
for almost rigid interactions (m ≈ 0). If rotational viscosities become smaller, that is
to say in cases like cases 2 or 3, the equivalent continuum is a usual Cauchy medium,
de&ned by a single symmetric stress tensor.
Constitutive equations of the &ber net’s equivalent continuous medium cannot be

obtained in an explicit form. They require the numerical determination of each order
zero forces and sometimes of order zero or order one moments. Nevertheless, such a
computation can be achieved quite simply and does not imply huge numerical problems,
thanks to the periodicity assumption.
In a last stage, another fundamental property of the equivalent continuum was drawn.

Thanks to the power law nature of the &ber–&ber local interaction laws, in cases 2
and 3, the macroscopic stress tensor could be proved to be a degree m homogeneous
function of the macroscopic strain rate tensor. This shows that the equivalent contin-
uum is a power law and anisotropic <uid with the same strain rate sensitivity m as
the one postulated at the scale of &bers. Such a feature shows the way any appropriate
phenomenological continuous constitutive model should be chosen. Analogous results
could be deduced from the analysis of case 1, but with no such simple interpreta-
tion, because the behavior of the equivalent continuum depends on two independent
macroscopic &elds.
In the present work, an application of the method of homogenization of periodic

discrete structures was presented. The method was shown to provide fundamental the-
oretical results on the structure of macroscopic constitutive equations suitable for a
continuous modelling of a speci&c net of &bers. It requires almost no restrictive phys-
ical assumptions and enables an easy, computer time eHcient, analysis of the behavior
for &ber nets eventually including a great number of &bers, which is a necessary feature
for the study of most &ber-reinforced <uids.
As is visible in the above theoretical exposition, many extensions to this work can be

envisaged. Richer &ber–&ber interaction laws could &rst be introduced, as, for example,
the case of Carreau type or viscoelastic interactions, or dry friction between &bers. The
great adaptability of the method would also enable one to account for the <exibility of
&bers, considering them, for example, as elastic beams.

Appendix A

As shown in Section 4, in the general case, the state of stress of the &ber net is
de&ned by the three tensors �0, �0 and �

0
, the vector �

0
being given by the relation

g�
0
=
∑
k∈CR

f k
0
∧ Lk =

∑
k∈CR

f k
0
∧ (G · �k + pc

1
− pb

1
)
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according to de&nition (32) of Lk . Let us now multiply this last equation by a constant
virtual &eld 
0. We get

∀�
0
; g�

0
· �

0
=
∑
k∈CR

f k
0
∧ (G · �k) · �

0
+
∑
k∈CR

f k
0
· (pc

1
∧ �

0
− pb

1
∧ �

0
):

Terms like pb
1
∧ �

0
can be seen as a virtual &eld �b, so forces f k

0
being solutions of

the self-equilibrium equation (86), one obtains

∀�
0
; g�

0
· �

0
=
∑
k∈CR

f k
0
∧ (G · �k) · �

0

which gives an alternate de&nition of vector �
0
as

�
0
= g−1

∑
k∈CR

f k
0
∧ (G · �k):

This result then enables us to &nd the relation between �0 and �
0
, using the de&nition

and properties of the permutation tensor e. e is the tensor whose components in ei ⊗
ej ⊗ ek are

eijk =




1 if ijk belongs to the set {123; 231; 312};
−1 if ijk belongs to the set {132; 321; 213};
0 in any other case:

It is then easy to check that

�
0
= g−1

∑
k∈CR

(e · (G · �k)) · f k
0
= e :

∑
k∈CR

g−1(G · �k ⊗ f k
0
)

which is equivalent to

�
0
= e : �0:
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