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Synopsis

The rheology of highly concentrated fibers suspended in power-law fluids is investigated by
upscaling the physics at the fiber scale. A deterministic upscaling technique is used, namely the
homogenization method for periodic discrete structures. This micro-macro approach is used to
carry out a quantitative study of concentrated fiber suspensions with planar fiber orientation,
performing “numerical rheometry experiments” on a set of representative elementary volumes of
fiber suspensions. The simulations underline the significant influence of the fiber volume fraction
and orientation, as well as of the non-Newtonian properties of the suspending fluid on the resulting
macroscopic rheological behavior. The predictions of the model are compared with experimental
results obtained on an industrial thermoset short fiber-bundle polymer composite �SMC�. © 2005
The Society of Rheology. �DOI: 10.1122/1.1993594�

I. INTRODUCTION

Due to their interesting mechanical and thermo-physical specific properties and their
cost efficient processing, fiber reinforced polymer composites are attractive materials in
many applications �Advani, 1994; Berglund and Ericson, 1995�. For example, sheet
molding compounds �SMC� or glass mat thermoplastics �GMT� are now widely used in
the automotive or electrical industries to produce semi-structural and lightweight parts.
These composites have quite similar characteristics: they are 1 to 4-mm-thick pre-
impregnated sheets in which “short” glass fibers or glass fiber bundles �length
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�5–50 mm, weight fraction 10%–30%� have an initial random planar orientation and
constitute the reinforcement. The matrix is a filled thermoset resin in the case of SMC,
whereas it is a thermoplastic polymer for GMT. SMC are processed by compression
molding: stacked charges made of 1–10 cold ��296 K� sheets are rapidly squeezed
�mold closure speed �0.1-10 mm s−1� in a hot mold ��423 K�. The compression mold-
ing or stamping of GMT is very similar, except the temperature of the initial charges
��423 K� and the temperature of mold ��296 K�. This flowing stage is followed by a
period of �30 s to 5 min, during which the polymer matrix cures �SMC� or cools down
�GMT�, before ejecting the produced part from the mold. During the flowing stage, short
fiber composites can be seen as very concentrated fiber suspensions, whose suspending
fluid displays a non-Newtonian behavior. Understanding and modeling the strong cou-
pling between the mechanical behavior of these suspensions and their microstructure is a
key problem towards a good description of the rheology of such materials and the opti-
mization of composites manufacturing. For example, it is well known that the fiber
content and the evolution of fiber orientation during the forming process strongly affects
the final geometry and the properties of the produced parts �Osswald and Tseng, 1994;
Thomasson and Vlug, 1996�.

Fiber suspensions have a rather complex rheological behavior governed by micro-
structural parameters such as the fiber concentration, orientation and spatial distribution,
the mechanical properties of the fibers and the matrix, and the matrix-fiber or fiber-fiber
interaction mechanisms. The deformation mode of the suspension depends on its concen-
tration regime. Within the dilute regime, it is assumed that the perturbation of the flow
field in the matrix near a fiber is not affected by the presence of the others because the
fibers are sufficiently far apart from each other. Within the semidilute regime, fibers have
hydrodynamic interactions because the flow field perturbations surrounding the fibers
overlap. Within the concentrated regime, the average distance between the fibers is of the
order of fiber diameter so that fibers interact through hydrodynamic and also direct
contact effects. Fiber composites such as GMT and SMC belong to this category: their
high fiber content and their “planar” fiber orientation are such that fibers or fiber bundles
are strongly entangled, bend, and experience multiple contacts with their neighbors.

The modelling of dilute and semidilute suspensions has been addressed in a lot of
theoretical and numerical studies. Theories are now well-established for suspensions of
rigid fibers in Newtonian solvents. Most models are based on the fundamental pioneering
works of Jeffery and Batchelor. Jeffery �1922� analyzed the motion of a rigid small
ellipsoidal particle in an infinite incompressible Newtonian solvent, with no external
forces or torques or Brownian motion, and determined the stress state near the particle.
This approach gave rise to different models of suspensions of ellipsoids in the dilute or
semidilute regimes �Ausias et al., 1992; Lipscomb et al., 1988; Phan-Thien and Graham,
1991�. Batchelor has a predominant influence on fiber suspensions modeling theories.
First he gave a general framework for mechanical models for suspensions �Batchelor,
1970a, 1974�, second he developed slender body theories to determine the force applied
on a particle and particle flow interaction �Batchelor, 1970b�, third he modeled the be-
havior of semidilute suspensions of aligned fibers �Batchelor, 1971�. A generalization of
the last problem to arbitrary orientation distribution was achieved by Dinh and Armstrong
�1984�. The semidilute theory was further developed by Shaqfeh, Koch, Fredrickson, and
co-workers �Koch, 1995; Koch and Shaqfeh, 1990; Shaqfeh and Koch, 1990� and vali-
dated by means of experiments �Petrich et al., 2000� or numerical simulation �Macka-
plow and Shaqfeh, 1996; Sundararajakumar and Koch, 1997�. Notice that all these mod-

s
els lead to a common expression for the macroscopic stress tensor of the suspension � :
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��s� = − p�s�� + ��m� + ��f�, �1�

where the pressure p�s� is related to the assumed incompressibility of the suspension, and
where ��m� and ��f� are bulk extra stress contributions due to the matrix and fibers,
respectively. ��f� depends on matrix-fiber but also fiber-fiber interactions. Also notice that
these models account for fiber orientation; this is usually done using the orientation
tensors �see for instance the review by Dupret and Verleye �1999��, which are compact,
efficient macroscopic measurement of fiber orientation. The influence of fiber orientation
on the overall behavior of the suspensions is accounted for by coupling anisotropic
constitutive expressions of ��s� with a set of equations modeling the change of the
orientation tensors during the flow �Ausias et al., 1992; Dupret and Verleye, 1999; Hand,
1962; Hinch and Leal, 1975; Munganga et al., 2000�. This system of equations is often
based on an extension of the fundamental problem of the orientation evolution of a
slender particle suspended in a infinite incompressible Newtonian fluid for the dilute or
semidilute regimes of concentration �Bretherton, 1962; Fan et al., 1998; Folgar et al.,
1984; Jeffery, 1922; Koch, 1995, Phan-Thien et al., 2002; Rahnama et al., 1995�. Closure
approximations of the fourth-order orientation tensor in terms of the second-order orien-
tation tensor were developed to simplify calculations �Advani and Tucker, 1987, 1990;
Chung and Kwon, 2002; Cintra and Tucker III, 1995; Dupret and Verleye, 1999; Hand,
1962; Hinch and Leal, 1976�. The problem of closure approximations has attracted a lot
of attention during the past decades. It remains a difficult one: for example, it has been
shown that some closure approximations could provide kinematic or thermodynamic
anomalies �Galdi and Reddy, 1999; Munganga et al., 2000�, whereas others are more or
less relevant depending on the local flow and the current orientation of fibers. At last, all
the approaches cited above are devoted to Newtonian suspending fluids. To our knowl-
edge, few contributions analyze and model the mechanical behavior of fiber suspensions
in power-law fluids �Gibson and Toll, 1999; Goddard, 1976; Souloumiac and Vincent,
1998�, which are of interest in compounds such as SMC or GMT. In a sense, these studies
are extensions of the works of Batchelor �1971� and Dinh and Armstrong �1984�.

In order to describe the rheology of concentrated fiber suspensions, semidilute models
have been applied although the description of local mechanisms of interactions between
fibers remains unappropriate for such materials. Indeed, Mackaplow and Shaqfeh �1996�
showed that the comparison of the predicted viscosities of theories and simulations based
on hydrodynamic fiber-fiber interactions with experimental measurements reveals diver-
gence in the concentrated regime. Such a deviation was explained by the leading role of
mechanical contacts between fibers in the concentrated regime, this type of fiber-fiber
interaction being omitted in semidilute theories. The nature of fiber-fiber contact in the
concentrated regime was further investigated experimentally with Newtonian fiber sus-
pensions �Petrich and Koch, 1998� and non-Newtonian fiber or fiber bundle suspensions
�Ericsson et al., 1997; Servais et al., 1999a, b�. Conclusions drawn from these works tend
to prove that fiber-fiber contact efforts are ruled by Coulombic friction and lubrication
mechanisms, the last one being linked to the deformation of a thin amount of entrapped
matrix �e� in the contact zones. Following such experimental evidence, several numerical
studies using particle-level simulation methods have been carried out to understand the
behavior of concentrated suspensions and model their macroscopic rheology �Fan et al.,
1998; Joung et al., 2001, 2002; Sundararajakumar and Koch, 1997; Switzer and Klingen-
berg, 2003; Yamane et al., 1995�. Considered fibers are straight and rigid �Fan et al.,
1998; Sundararajakumar and Koch, 1997; Yamane et al., 1995�, or flexible and curved
�Joung et al., 2001, 2002; Switzer and Klingenberg, 2003�, and have three-dimensional

orientation. Mechanical contacts between fibers induce frictionless non-hydrodynamic
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�Sundararajakumar and Koch, 1997�, lubrication �Fan et al., 1998; Joung et al., 2001,
2002, Yamane et al., 1995� or Coulombic contact forces �Switzer and Klingenberg,
2003�, arising from the relative motion of connected fibers. Notice that in all these
sophisticated numerical studies, �i� the considered suspending fluid is restricted to the
Newtonian case, �ii� none of them use non-Newtonian viscous contact forces, and �iii� no
contact moments are considered. In parallel, Toll and Månson �1994� have proposed a
probabilistic model well suited for concentrated suspensions with non-Newtonian sus-
pending fluid and planar fiber orientation. In this model, more realistic mechanisms for
interaction forces were considered: at each contact point between two fibers, the force
exerted by one on the other is composed of a normal and a tangential component. The
normal one is purely elastic and reflects the elastic bending of fiber in the thickness of the
planar suspension: it is a power-law function of the fiber volume fraction, with a power-
law exponent of 5. The tangential one is a friction force that depends on the sliding
velocity at the contact point and on the normal force. Servais et al. have specified more
precisely this tangential component for fiber suspensions �Servais et al., 1999b� or bundle
ones �Servais et al., 1999a�, splitting it into two contributions: a dry or Coulombic
friction contribution, function of the normal component and the sliding velocity direction,
and a lubrication contribution, induced by the shearing of a small amount of entrapped
fluid �e� at the interface between two contacting or almost contacting fibers or bundles.
The lubrication contribution is a power-law �Servais et al., 1999b� or a Carreau type
�Servais et al., 1999a� function of the sliding velocity, which power-law exponent �or
strain-rate sensitivity index� is the same as that of the suspending fluid. It is also a square
function of the fiber volume fraction. However, as in the particle level simulation models,
contact moments have been neglected in their micromechanical analysis. Moreover,
rather strong kinematical assumptions were postulated for the in-plane motion of fibers:
the velocity of the center of each fiber was assumed to be that of the bulk suspension and
the rotation of a fiber was supposed to be an affine function of the macroscopic velocity
gradient.

Within that context, a theoretical investigation based on a deterministic upscaling
technique has been recently proposed to establish the fundamental properties of the
macroscopic mechanical behavior of networks of fibers, looked as bars, linked by power-
law viscous joints that induce forces but also moments during the relative motion of
contacting fibers �Le Corre et al., 2004�. Such microstructures and mechanical fiber-fiber
interactions are rather close to those encountered in highly concentrated suspensions with
power-law suspending fluid such as GMT or SMC. Unfortunately, in this purely theoret-
ical work, no quantitative study was developed in order to link constitutive parameters of
the macroscopic mechanical behavior with microstructural ones. Hence, the aim of the
present contribution is first to study quantitatively the deformation of concentrated non-
Newtonian fiber bundle suspensions displaying a planar bundle orientation pursuing the
theoretical framework proposed in Le Corre et al., �2004� and adopting bundle-bundle
contact mechanisms close to that encountered in industrial planar short fiber composites,
i.e., similar to those proposed by Toll and co-workers �Ericsson et al., 1997; Servais et
al., 1999a, b; Toll and Månson, 1994�. The other point is then to emphasize the role of the
microstructure on the resulting macroscopic mechanical behavior and compare the pre-
diction of the established micro-macro model with experimental results obtained from an
industrial SMC �Dumont et al., 2003; Le Corre et al., 2002�. For that purpose, the basic
assumptions of the model derived by Le Corre et al. �2004� as well as the micromechani-
cal analysis of the motion of bundles and interactions are given in Sec. II. A brief
presentation of both the upscaling technique and the fundamental results deduced from it

are given in Sec. III. In Sec. IV, we introduce the numerical scheme that was developed
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to study quantitatively the macroscopic mechanical behavior of typical planar concen-
trated bundle suspensions. This finally enables one to compare numerical simulation
results with rheometry experiments performed with an industrial SMC �Sec. V� and to
discuss some of the hypotheses made in the micromechanical analysis �Sec. VI�.

II. PROBLEM STATEMENT AND IDEALIZATION

A. Notation

For the rest of the document, please notice that in order to distinguish phenomena
arising at the microscopic scale inside the polymer matrix �m�, the fibers �f�, or in the
whole suspension �s�, from those “apparently” resulting at the macroscopic scale, we
introduce a specific notation for microscopic and macroscopic quantities: if � is a scalar
physical quantity, then ���� �with the subscript ���� is the microscopic or local value of �

in phase � �s ,m, or f�, whereas ���� �with the exponent ���� is the macroscopic or
averaged value of � for the same constituent.

B. Basic assumptions

The suspensions under consideration in the present contribution are SMC or GMT-like
materials: they are sheets of thickness h in which fiber bundles of length l are homoge-
neously distributed in the plane of the sheets P��e1 ,e2� and immersed in a non-
Newtonian fluid. The thickness of the sheet �e3 direction� is supposed to be small com-
pared to the length of the fiber bundles �h� l�. Moreover, the fiber suspensions are
sufficiently concentrated to form networks of contacting bundles. At the microscopic or
local scale, i.e., at the bundle scale, the deformation of the suspension is therefore mainly
ruled by bundle-bundle short range interactions. Such an assumption is supported by
experimental results obtained on industrial SMC or GMT �Dumont et al., 2003; Ericsson
et al., 1997; Le Corre et al., 2002; Servais et al., 1999a, 2002, 1999b�. At the macro-
scopic scale, this leads to neglect ��m� in Eq. �1�:

��s� � − p�s�� + ��f�. �2�

In addition, the suspension is assumed perfectly saturated and the matrix as well as the
bundle incompressible, so that the suspension is considered as incompressible. At last,
inertia effects will be neglected. Such an assumption is supported both by the rheological
properties of SMC or GMT materials �density �2000 kg m−3, viscosity ranging from 103

to 109 Pa s� and by the typical processing parameters that involve in-plane velocities
ranging from 10−2 to 1 m s−1 and thicknesses of 1 to 10 mm. The resulting Reynolds
number Re rarely exceeds 10−2.

To evaluate the macroscopic fiber stress tensor ��f� under such circumstances, a de-
terministic upscaling technique is used �see Sec. III�. As in all homogenization processes,
it is of great importance to emphasize that the heterogeneous local deformation of the
described suspensions can be homogenized, i.e., can be modeled by an equivalent con-
tinuous macroscopic description, provided that the condition of scale separation is satis-
fied. For the suspensions under consideration, this fundamental condition may be ex-
pressed as

� =
d

L
� 1, �3�

where d and L are, respectively, the characteristic lengths of the heterogeneities at the

bundle scale and of the macroscopic sample, as illustrated in Fig. 1. In industrial SMC or
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GMT, d is of the order of the fiber length l ��25 mm�, whereas L can be considered as
the typical size of industrial molded parts ��1 m�: this leads to a rather good scale
separation about 2.5�10−2.

C. Micromechanical analysis

1. Bundles geometry

Figure 2 gives an optical micrography showing cross sections of typical industrial
glass fiber bundles used in SMC. These bundles are made of about 200 fibers of diameter
15 �m, and have a rather flat cross section, with an average major dimension dmax

0 of

FIG. 1. Homogenization method for discrete and periodic media: basic principle and specific asymptotic
expansions.

FIG. 2. Optical micrographies showing typical glass fiber-bundles used in industrial SMC: �a� top view of

bundles, �b� cross-sections of bundles, �c� idealization of bundles geometry.
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0.6 mm±15% and an average minor dimension dmin
0 of 0.06 mm±15%. In the following,

we will assume that the bundles have homogeneous constant elliptical cross sections,
which major and minor axes are dmax

0 and dmin
0 , respectively.

Before being introduced in the compounds, bundles are straight cylinders of length l
�for the bundles displayed in Fig. 2, l=25 mm�. Note that the aspect ratios dmax

0 / l and
dmin

0 /dmax
0 of the considered fiber bundles are of the order of the scale separation param-

eter �, i.e., dmax
0 / l=O��� and dmin

0 /dmax
0 =O���. When the bundles are introduced in the

industrial sheet compounds, they are submitted to a packing stress perpendicular to the
plane of the sheet. This initial packing stage is such that the volume fraction of bundles
in the sheet is largely higher than the maximum volume fraction that can be reached with
strictly rigid and straight bundles. This implies the following:

�1� Bundles flatten normal to the packing stress, so that the major axis dmax

�dmax
0 �=O�dmax

0 ��, is perpendicular to the packing stress. Conversely the minor axis
dmin�dmin

0 �=O�dmin
0 �� is parallel to the packing stress.

�2� Bundles are bent mainly around the major axis dmax, thus in the thickness of the
sheet. As the thickness of the sheets h�2–3 mm is rather small compared to the
length l of bundles, i.e., h / l=O���, we will consider that each bundle b has a mean
orientation along a unit vector eb contained in the plane P.

2. Bundles kinematics

To study the rheology of the bundle suspensions under consideration, several kine-
matical restrictions are stated. They are listed in the following points.

�1� As first approximations, similar to that proposed by Servais et al. �1999a�, the bend-
ing of bundles in P is neglected and the bundles are assumed to keep a constant
elliptical cross section during the deformation. Let us consider point K located at a
curvilinear abscissa sb and an altitude zb from the center of mass Gb of bundle b
�GbK=sbeb+zbe3�. Introducing ũ as the projection of u in P, the velocity ṽb�K� of K
may therefore be written as

ṽb�K� = ṽb + sb	be3 Ã eb, �4�

where ṽb and 	b are, respectively, the in-plane velocity of Gb and the angular ve-
locity of the bundle about e3. This can also be written as

ṽb�K� = ṽb + � sb
*�be3 Ã eb, �5�

where sb
*=sb /d is the local abscissa of K on bundle b normalized with respect to d,

and where �b=L	b is introduced in order to normalize angular velocities with re-
spect to linear velocities �Le Corre et al., 2004�.

�2� Because of the very high bundle content, the low ratios dmin/dmax and h / l, the
rotation of the bundles about axis contained in P is considered as negligible, so that
during the deformation, the major dimensions l and dmax stay in P. If �b�K� is the
local angular velocity of the bundle, this yields

�b � 	be3. �6�

One can finally write:

vb�K� = ṽb + � sb
*�be3 Ã eb + v3be3, �7�

where v3b is due on one hand to the overall motion of the suspension along e3 and on

the other hand to the bending of the bundles about axis contained in P.
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�3� The macroscopic shearing in the thickness of the sheets will not be investigated in
the present contribution: noting L�s�=grad�v�s�� the macroscopic velocity gradient of
the suspension, only situations for which Li3=L3i=0 �i=1,2� will be explored.

To summarize, these assumptions lead to restrict the present model �i� to thin concen-
trated suspensions where fiber bundles have and keep a mean planar orientation and
display small deformation during the flow, �ii� to situations where no out of plane shear-
ing occurs. Notice that these assumptions are not a restriction of the proposed method-
ology which could be extended to thick three-dimensional suspensions containing straight
or curved flexible fibers, and to any given macroscopic velocity gradient.

3. Bundle-bundle mechanical interaction

As mentioned in Sec. I, the complex bundle-bundle interactions occurring during the
deformation of concentrated suspensions have been modeled by means of normal forces
and tangential lubrication and/or Coulombic friction forces �Ericsson et al., 1997; Servais
et al., 1999a, b�. Rheometry experiments performed on highly concentrated suspensions
made of fibers or bundles of fibers give useful information about the predominant type of
interaction �Dumont et al., 2003; Ericsson et al., 1997; Le Corre et al., 2002; Servais et
al., 1999a, 2002, 1999b�. When the fiber content is “high,” the macroscopic strain rate is
“low,” and the viscosity of the matrix is “low,” then the elastic normal forces as well as
dry friction tangential forces seem to play a key role on the overall behavior of the
suspension. Conversely, tangential lubrication forces seem to govern the rheology at
“lower” fiber contents, “higher” macroscopic strain rates, and “high” matrix viscosity.
More precisely, bundle suspensions such as SMC and GMT that are deformed within
macroscopic strain rates and bundles content ranges encountered during their processing
�respectively, from 10−2 to 102 s−1, and from 5wt % to 30wt %� behave as a first and
reasonable approximation as purely viscous anisotropic fluids whose macroscopic vis-
cosities are �i� power-law or Carreau-type functions of the macroscopic strain rate state
�Dumont et al., 2003; Servais et al., 1999a, 2002� and �ii� quadratic functions of the
bundle content �Dumont et al., 2003�.

Within the concepts proposed by Toll and Månson �1994�, and accounting for the
above experimental evidence, the following assumptions will be further done for the
bundle-bundle interactions:

�1� interaction forces normal to plane P, that are mainly induced by the in-thickness
elastic bending of the bundles will be considered as negligible:

fk · e3 � 0 ⇔ fk � f̃k, �8�

�2� possible associated Coulombic friction forces will therefore be neglected,
�3� the bundle-bundle interactions are due to lubrication forces but also lubrication mo-

ments, both induced by the shearing of a small amount of an incompressible and
purely viscous medium �e� entrapped between bundles in contact.

The geometry of the viscous medium �e� �the contact zone�, its microstructure and its
rheology may be very complex. Only in situ observations of contact zones during the
deformation of the bundle suspension would allow one to determine their global geom-
etry, the microstructure �homogeneous/heterogeneous�, and the deformation micromecha-
nisms of the entrapped viscous medium in order to build a pertinent micromechanical
model. For the moment, using the fact that dmax is about ten times greater than dmin, we

simply assume that this complex situation is equivalent to the shearing of a thin prism of
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height � �see Fig. 3� of an equivalent homogeneous entrapped viscous fluid �e�, which
rheology is given by the following power-law model:

��e� = − p�e�� + 2
�e�� �̇�e�

�̇0
	�m−1�

D�e�, �9�

where ��e� and p�e� are, respectively, the local stress tensor and pressure in the equivalent
entrapped fluid, �̇�e� the local shear rate, 
�e� is the viscosity of the fluid at a characteristic
shear rate �̇0 arbitrarily fixed to 1 s−1, D�e� the local strain rate tensor, and m the power-
law exponent.

In the case of an ideal power-law matrix, 
�e� and m would be exactly the same as the
viscosity and the power-law exponent of the bulk matrix. For a polymer matrix �GMT�,
it is well known that the power-law model is a first approximation of the polymer
viscosity that is only acceptable within a restricted shear rate range: the viscosity 
�e� and
the power-law exponent m of the entrapped fluid should correspond to those which
should be measured on the bulk polymer matrix tested under the same shear rates. For
pasty matrices �e.g., SMC, see Sec. V�, which include a great amount of mineral charges
with a mean diameter of the same order of magnitude as the diameter of the fibers
contained in a bundle, no such straightforward correlation can be done. 
�e� and m can for
example be determined from “bundle pull-out experiments” similar to those performed
by Servais et al. �1999a�, or directly using a rheometry experiment on the whole bundle
suspension �see Sec. V B�.

Thereby, it was finally assumed that during the relative displacement of a couple k of
connected bundles b and c �the center of the contact zone is noted K�, the entrapped fluid
is submitted to the superposition of:

�1� a uniform planar simple shear at the shear rate �̇1�e�, due to the in plane difference of
velocities of bundles �ṽk:

�̇1�e� =

ṽb�K� − ṽc�K�


=

�ṽk
 , �10�

FIG. 3. Modeling of bundle-bundle local interactions: side view of the interaction zone �b�, top view of the
interaction surface approximation for local moments evaluation �c�.
� �
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�2� a rotating planar shear �̇2�e��r� due to the difference of angular velocities of bundles
��k=�	ke3, where r= 
KM
 is the distance of the considered point M to the center
of the contact zone K �see Fig. 3�c��. This shear rate is

�̇2�e��r� = r

�b − �c


�
= r


�	k

�

. �11�

In order to evaluate the expressions and the order of magnitude of both interaction
forces and moments, two separate situations are considered. The interaction force fk

exerted by the bundle c on the bundle b is evaluated by considering the case where
��k=0, whereas the interaction moment Mk�K�=Mk�K�e3 is evaluated in the case �vk

=0. A real planar motion however generally implies both effects but those two limiting
cases should give a good approximation. According to Eq. �9�, the norm of fk is defined
as


fk
 = �
Sk


�e�� �̇1�e�

�̇0
	m−1

�̇1�e�dS , �12�

where Sk denotes the surface of the connection k in the plane of bundles, characterized by
dmax and �
k, the relative angle between both connected bundles �see Fig. 3�. The shear
rate being assumed homogeneous, a rather simple expression of fk can therefore be
established:

fk =

�e�

�

dmax
2

�sin �
k�
� 
�ṽk


��̇0
	m−1

�ṽk = �k
�ṽk
m−1�ṽk. �13�

In the same way, moments intensities �Mk�K�� are defined as

�Mk�K�� = �
Sk


�e�� �̇2�e�

�̇0
	m−1

�̇2�e�rdS . �14�

No such simple result can be drawn in that case. Nevertheless, an upper bound �M�k�K��
of �Mk�K�� can be found, using the elliptical surface S�k instead of Sk �see Fig. 3�c��. The
integration of Eq. �14� on S�k provides the following result:

�Mk�K�� � �M�k�K�� ,

M�k�K� = �k
 �

m + 3
� dmax

�sin �
k�
	m+1���	k�m−1�	k. �15�

Using �b=	b /L and introducing mk=M�k�K� /L, this last expression can also be written
as

mk = �k
 �

�m + 3��sin �
k�m+1�dmax

L
	m+1����k�m−1��k

=�k���k�m−1��k, �16�
where coefficient �k has the same unit as the viscosity �k.
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4. Momentum balance for a bundle

Neglecting acceleration and external volume forces and moments, and introducing Cb

the set of connections of bundle b, the momentum balance of a given bundle b can be
written as

∀b, � �
k�Cb

fk = 0 �17a�

�
k�Cb

Mk�Kk�e3 = �
k�Cb

sbfk Ã eb + �
k�Cb

zkfk Ã e3 �17b�

noting GbKk=sbeb+zbe3. In Eq. �17b�, it is easy to show that the second term on the
right-hand side is negligible compared to the first one �dmin/ l=O��2��. Hence, the equi-
librium of bundle b can be approximated by

∀b, � �
k�Cb

fk = 0 �18a�

�
k�Cb

mke3 = �
k�Cb

� sb
*fk Ã eb˙ �18b�

As contact forces are contained in P and functions of �ṽk only, it is worth noting that the
above-noted momentum balances simplify in a two-dimensional mechanical problem.
Equation �18a� presents vectorial equations contained in P and Eq. �18b� presents vec-
torial equations along e3.

III. UPSCALING: DETERMINATION OF THE MACROSCOPIC BEHAVIOR

To determine the macroscopic behavior of such planar bundle networks, Le Corre et
al. �2004� have recently used the homogenization method for periodic discrete structures.
This theoretical framework is an extension to discrete structures of the homogenization
method of multiple scale expansions for periodic structures �Auriault, 1991; Bensoussan
et al., 1978; Sanchez-Palencia, 1980�. It has been initially developed for the modeling of
mechanical properties of trusses, honeycomb structures or buildings in the scope of
elasticity �Boutin and Hans, 2003; Moreau and Caillerie, 1995, 1998; Pradel and Sab,
1998; Tollenaere and Caillerie, 1998�. Its principal advantages rely upon the possibility of
avoiding prerequisites at the macroscopic scale, modeling finite size macroscopic
samples, determining whether discrete systems can be homogenized or not, providing the
domains of validity of the macroscopic models �Auriault, 1991�. The objective of the
following sections is to give a brief review of the derivation of ��f� by this upscaling
technique. For details related to the theoretical aspects of the analysis given in the fol-
lowing, the reader is referred to Le Corre et al. �2004�.

A. Methodology

The homogenization method is based on the periodicity assumption �see Fig. 1�. As a
consequence, the suspension is seen as a periodic assembly of identical representative
elementary volumes �REVs�, each REV containing N bundles b connected through C
bundle-bundle connections k. Combined with the scale separation condition �3�, the pe-
riodicity condition enables one to write the translational and rotational velocity fields ṽb

and �b of a given bundle b in “discrete” asymptotic expansions in powers of the scale
separation parameter � such as �Le Corre et al., 2004; Moreau and Caillerie, 1995;

Tollenaere and Caillerie, 1998�
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ṽb�x̃� = ṽb
�0��x̃� + � ṽb

�1��x̃� + �2ṽb
�2��x̃� + ¯ , �19�

�b�x̃� = �b
�0��x̃� + � �b

�1��x̃� + �2�b
�2��x̃� + … . �20�

In these equations, fields ṽb
�n� �respectively, �b

�n�� which denote the “�n-order” fluctuation
of ṽb �respectively, �b�, as depicted in Fig. 1, are continuous functions of the space
variable x̃ and periodic function of the local bundle index b. These expansions are then
introduced in the momentum balance equations �18a� and �18b� and the use of a virtual
power formulation is made in order to determine the macroscopic behavior of the con-
sidered fiber networks �Tollenaere and Caillerie, 1998�. In particular, studying the self
equilibrium of a REV at the lower orders of �, Le Corre et al. have shown that velocity
fields ṽb

�0� do not depend on the considered bar b, so that

∀b, ṽb
�0� = ṽ�s�. �21�

B. Constitutive equations

To determine the nature of the macroscopic behavior of a network of bundles whose
bundle equilibrium is driven by the two-dimensional �2D� momentum balances �18a� and
�18b�, we have considered three situations, depending on the order of magnitude of
interaction moments �the left-hand side of Eq. �18b�� with respect to moments of inter-
action forces �the right-hand side of Eq. �18b��, i.e., O��−1� ,O�1�, and O���. In the first
case, when local interaction moments are of one order of magnitude greater than mo-
ments of interaction forces, the resulting equivalent macroscopic medium of the bundle
network is a general Cosserat medium �Cosserat and Cosserat, 1909; Germain, 1973;
Truesdell and Noll, 1965�. In the two other situations, i.e., when local interactions mo-
ments are of the same order of magnitude, or of one order of magnitude smaller than the
moments of interaction forces, the suspension is a usual Cauchy medium.

We will suppose that the considered bundle networks belong to the third situation : �i�
at the macroscopic scale, they behave as usual Cauchy media and �ii� their bundle-bundle
contacts are such that interactions moments are small �O���� with respect to the moments
of interaction forces. This assumption will be extensively discussed and validated a
posteriori in Sec. VI. Notice that in this situation, the macroscopic Cauchy 2D stress
tensor �̃�f� is defined within a relative error of O��� as

�̃�f� =
1

V�s��
k=1

C

�̃k � f̃k
�0�. �22�

In Eq. �22� V�s� is the volume of the considered REV, �̃k is the projection of GbGc in plane

P, and f̃k
�0� is the first non-null term in the asymptotic expansion of the interaction force

fk.

C. Essential properties of the equivalent continuum

The stress tensor �̃�f� can be proved to be symmetric, but as is clear from Eq. �22�,
enters in the scope of general anisotropy. Its explicit calculation requires the determina-

tion of forces f̃k
�0� given by

f̃k
�0� = �k
�ṽk

�1�
m−1�ṽk
�1�, �23�
where
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�ṽk
�1� = ṽc

�1� − ṽb
�1� + L̃�s� · �̃k + sc

*�c
�0�e3 Ã ec − sb

*�b
�0�e3 Ã eb. �24�

Moreover, as explained in Le Corre et al. �2004�, kinematic unknowns ṽb
�1� and �b

�0� can

be calculated by considering L̃�s� as input data of the nonlinear self-equilibrium problem
of the REV that contains N bundles:

∀ b � V�s�, � �
k�Cb

f̃k
�0��ṽb

�1�,ṽc
�1�,�b

�0�,�c
�0�,L̃�s�� = 0

�
k�Cb

mk
�0�e3 + �

k�Cb

sb
*eb Ã f̃k

�0��ṽb
�1�,ṽc

�1�,�b
�0�,�c

�0�,L̃�s�� = 0� �25�

noting

mk
�0� = �k��c

�0� − �b
�0��m−1��c

�0� − �b
�0�� . �26�

Following this procedure and assuming that no internal mechanism is likely to occur i.e.,
no isolated fibers or groups of fibers�, a well-posed problem is obtained, with 3N equa-
tions for 3N unknowns. Isolated fibers do not influence the overall equilibrium of the
network so they can be removed from the assembly by a simple numerical treatment.
Practically, for the bundle geometry and the REVs we have generated �see Sec. IV�, the
maximum number of eliminated bundles was about 3 for the lowest tested fiber fractions
f �f�=0.07, which represents at most 1.5% of the total number of bundles. This procedure
enables one to analyze rather “low” fiber contents while staying in the concentrated
regime. In our numerical studies described in the following, the case of isolated groups of
fibers was never encountered, it could certainly happen at yet lower fiber volume frac-
tions. Such a case was not investigated here because it would enter in the domain of
semidilute suspensions, where the matrix contribution cannot be neglected anymore.

Under this restrictive assumption, Eq. �25� enables the calculation of ṽb
�1� and �b

�0� for
any given imposed macroscopic velocity gradient. This equilibrium can be set in the
following general form:

F�X,L̃�s�� = 0 , �27�

X being a vector of size 3N containing all the local kinematic unknowns. In this system,

�̃�f� is an implicit nonlinear function of L̃�s�, which actually reduces to a function of the

macroscopic strain rate tensor D̃�s� because of the symmetry of stresses. Furthermore, the
following property can be shown �Le Corre et al., 2004�:

� if X is the solution of F�X,L̃�s�� = 0 ,

�X is the solution of F�X�,�L̃�s�� = 0˙
� �28�

As a direct consequence:

∀� � R �̃�f���D̃�s�� = ����m−1�̃�f��D̃�s�� , �29�

so that the macroscopic stress tensor �̃�f� exhibits a degree m homogeneity with respect

to D̃�s�. Consequently, the studied suspension is an anisotropic power-law fluid, with a
macroscopic power-law index m, which is equal to the one postulated at the level of

bundle-bundle interactions.

nse or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  152.77.24.10 On: Sun, 22 Feb 2015

12:35:30



1042 LE CORRE et al.

 Redistribution subject to SOR lice
IV. NUMERICAL PROBLEM

The objective of this section is to show how it is possible to highlight more precisely
the influence of the microstructure of the bundle network on the macroscopic behavior.
For that purpose, we consider the deformation of bundle networks as representative as
possible of typical industrial compression molded composites �Sec. IV A�. The quantita-
tive responses of such microstructures, i.e., the macroscopic stress state �̃�f� and the
evolution of the orientation of bundles to given imposed mechanical loadings, i.e., the

macroscopic strain rate L̃�s�, are studied through a numerical approach �Sec. IV B�.

A. Microstructure generation

The morphology of real bundle networks is something roughly complex that can
hardly be described with precision. Micrographies of bundles configuration in industrial
parts can be achieved by several experimental observation techniques such as X-rays or
microscopy, �Greene and Wilkes, 1997; Hamada et al., 1994�. Those techniques eventu-
ally enable one to obtain precise data about the spatial distribution of bundles position
and orientation, but still do not provide any data about the connectivity of bundles. An
alternate way to obtain fully defined bundle networks is to use numerical generation
processes that try to mimic real microstructures. Such a method plants the problem of the
representativity of the generated microstructure with respect to the original one. Fortu-
nately, industrial polymer composites such as SMC and GMT involve very concentrated
planar fiber suspensions, so an elementary representative volume will contain a great
number of bundles. In this idea, a statistically equivalent microstructure might be quite
easily found and a random generation method seems appropriate.

1. Processing

Three-dimensional networks containing N bundles �see Fig. 4� were generated. The
center of mass of each bundle has a random position �xb ,yb� in the plane P ranging in
�−d /2 ,d /2�, and a random altitude hb in �0,h�, d and h being, respectively, the dimen-
sions of the REV in the �e1 ,e2� plane and in the e3 direction �thickness of the sheets�.
Quasi-isotropic and oriented planar networks are generated using, respectively, a uniform
distribution of angles 
b, and a Gaussian random distribution of angles 
b centered on

=0 and with a variable standard deviation. The last procedure enables the generation of

FIG. 4. Example of generated representative elementary volume �V�s�=25�25�2.5 mm3�, containing 437
bundles of length 25 mm �f �f�=0.188�. Open circles represent the connections location, lines represent the
centerline of the bundles ��*=3�.
bundle networks having almost isotropic orientations to almost unidirectional ones.
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The connectivity of the network, that is to say the location of the C bundle-bundle
contact points is computed using a deterministic methodology directly inspired by the
statistical tube model proposed in previous studies �Doi and Edwards, 1978; Ranganathan
and Advani; 1991; Toll, 1993� and already used in rheological models of highly concen-
trated planar fiber suspensions �Servais et al., 1999a, b; Toll and Månson, 1994�. For that
purpose, a control volume Vb is defined around each considered bundle b. Every bundle
c whose centerline intersects Vb is added to the connectivity set of bundle b, denoted Cb.
The control volume Vb is chosen as a rectangular box with dimensions l�dmax

��*dmin, where �* is a dimensionless parameter. Its determination will be detailed in Sec.
V B, when comparing the prediction of the model with experimental data.

2. Macroscopic characterization of generated networks

At the macroscopic level, the generated bundle networks are first characterized by
their orientational state, which can be defined in different manners. The most descriptive
approach would be to use the orientation distribution function � �Folgar et al., 1984�.
However, to our knowledge, it can hardly be determined without cumbersome calcula-
tions that are not possible in practical applications. Instead, one prefers to use compact

and convenient approximations of �, such as the second-order orientation tensor Ã
�Advani and Tucker, 1987�:

Ã =
1

N
�
b=1

N

eb � eb. �30�

As shown in Fig. 5, such a compact macroscopic measurement of bundles orientation
gives a reasonable approximation �A �Advani and Tucker, 1987� of the orientation dis-
tribution function � in the particular case of the studied microstructures:

�A�
� =
1

�
+

4

�
�Ã −

1

2
�̃	:�e
 � e
 −

1

2
�̃	 , �31�

where e
=cos 
e1+sin 
e2 is the vector corresponding to orientation 
. Note that the
discrete representation of the distribution functions � plotted in Fig. 5 were built starting
from the initial normal distributions of orientation �cf. Sec. IV A 1�, and then using the
�-periodicity of � with respect to 
 in order to renormalize the resulting histograms.

The generated bundle networks are also characterized by the volume fraction of
bundles f �f�, related to the number of bundles per unit volume n�f�:

f �f� =
�

4
ldmaxdminn

�f� with n�f� =
N

V�s� . �32�

One can also introduce the number of connections per unit volume c�f�:

c�f� =
C

V�s� =
1

2
n�f�nc/b, �33�

where nc/b is the local average number of connections per bundle. Using the chosen
control volume in the tube model framework proposed by Toll �1993�, nc/b is theoretically
given by

nc/b = n�f�l�*�ldmin�1 + dmaxdmin�2 + dmaxdmin� . �34�
�f�
Using Eqs. �32�–�34�, c may also be expressed as
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c�f� =
8f �f�2

�2ldmaxdmin
�*� l

dmax
�1 + �2 + 1	 . �35�

Subsequently, the average number of connection nc/b and the density of connection c�f�

are, respectively, linear and square functions of the fiber volume fraction f �f�.
The 2D-orientation functions �1 and �2 go from 0 to 2/� and from 1 to 2/� when the

planar bundle orientation goes from fully aligned to random, respectively �Toll, 1993�. In
the current determinist approach, they were simply calculated in the following discrete
way:

�1 =
1

N2 �
b=1

N

�
c=1

N

�sin�
b − 
c�� , �36�

�2 =
1

N2 �
b=1

N

�
c=1

N

�cos�
b − 
c�� . �37�

In Fig. 6, functions �1 and �2 were plotted in terms of AI, the major eigenvalue of Ã.
They were computed in a discrete way �Eqs. �36� and �37�� for several orientation dis-
tributions going from the isotropic state �AI=0.5� to the perfectly aligned state �AI=1�. As

FIG. 5. Approximation �A of the orientation distribution function � given by the second-order orientation

tensor Ã in the case of a quasi-isotropic microstructure �A11=0.501, A22=0.499, A12=0� �a�, and of an oriented
microstructure �A11=0.7, A22=0.3, A12=0� �b�.
visible from Eqs. �35� and �41� �see Sec. IV C�, approximating these structural descrip-

nse or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  152.77.24.10 On: Sun, 22 Feb 2015

12:35:30



1045HIGHLY CONCENTRATED FIBER SUSPENSIONS

 Redistribution subject to SOR lice
tors as functions of AI could be a convenient way of incorporating the present results into
a continuum model of orientation and rheology.

3. Analysis of the generation procedure

In order to validate our numerical generation procedure, microstructures with identical

bundles �l=25 mm, dmin=0.06 mm, dmax=0.6 mm, �*=3�, orientation tensor Ã, fiber
volume fraction f �f�, but with an increasing number of bundles N were generated �as the
number of bundles N was increased, the height h of V�s� was increased�. The computed
density of connections c�f� was then compared to the one given by the analytical predic-
tions of the statistical tube model �Toll, 1993�. For that purpose, the theoretical average
number of connections per bundle nc/b was estimated from the generated angular posi-
tions through Eqs. �34�–�37�.

Within the investigated fiber volume fraction and orientation ranges �0.07� f �f�

�0.25, 0�A11�0.9�, results show that for N�400 bundles, a fairly good correlation is
obtained between the current determinist algorithm and the statistical tube model:
�c�f� /c�f�±5%. Therefore, in order to analyze the rheology of statistically representative
microstructures, calculations presented in the next sections were systematically per-
formed with a minimum number of bundles of 400.

B. Numerical rheometry experiments

Given the generated REVs and the physics of bundle-bundle interactions, it is now
clear from the above-mentioned considerations that the rheology of the studied suspen-
sions can be computed by the means of a procedure of numerical rheometry experiments.

FIG. 6. Evolution of the relative orientation functions �1 and �2 with the major eigenvalue of the second order

orientation tensor Ã.
Such numerical experiments consist in the following steps
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�1� Imposing a macroscopic velocity gradient L̃�s� to the generated REVs. As suspen-
sions are assumed incompressible and as Li3=L3i=0 �i=1,2�, this is equivalent to
imposing L�s� since the incompressibility yields L11

�s�+L22
�s�+L33

�s�=0.
�2� Solving numerically the system �27�. This was achieved using a classical Newton-

Raphson method based on successive corrections �X of the vector X such as

�F

�X
�X,L̃�s�� · �X = − F�X,L̃�s�� . �38�

As expected, the convergence was found to be hardest as the power-law exponent m
decreased. Unfortunately, due to the stiffness of such a nonlinear problem, it became
almost impossible for m�0.1, so very low sensitivities could not be investigated.

C. Post-treatment of results

Given the macroscopic loading path L̃�s�, the solution of the system �27�, composed of
kinematic fields ṽb

�1� and �b
�0�, finally allows the computation of the following data

�1� The rate Ã
˙

of the orientation tensor Ã defined as

Ã
˙

=
1

N
�
b=1

N

ėb � eb + eb � ėb =
1

N
�
b=1

N

��b � eb� � eb + eb � ��b � eb� . �39�

Due to property �28�, it follows that Ã
˙

is an homogeneous function of degree 1 with

respect to L̃�s�:

∀� � R Ã
˙ ��L̃�s�� = �Ã

˙ �L̃�s�� . �40�

�2� The macroscopic planar stress tensor �̃�f� using Eq. �22�–�24�. Note that in the
particular case of the generated bundle networks which follows the statistical tube
model of Toll, a more interesting expression of �̃�f� can be established, accounting

for �13�, �22�–�24�, and �35� and noting �̃k
*= �̃k / l:

�̃�f� = 
�e�
�*

�m

8f �f�2

�2

dmax

dmin
� l

dmax
�1 + �2 + 1	 1

C
�
k=1

C

�ṽk

�1�
m−1

�sin �
k�
�̃k

*
� �ṽk

�1�, �41�

�1 and �2 being given by Eqs. �36� and �37�, respectively. Equation �41� clearly
underlines the role of the bundles geometry �dmin/dmax,dmax/ l�, the fiber volume
fraction �f �f��, the orientation of network ��1 ,�2�, the rheology of the entrapped fluid
�
�e� ,m�, the geometry of the contact zones �� , �sin �
k�� and the external loading

��ṽk
�1��L̃�s���, on the overall stress state �̃�f�.

�3� The macroscopic stress tensor of the suspension ��s�: according to the basic assump-
tions detailed in Secs. II B and II C, i.e., Eq. �2�, Li3=L3i=0 �i=1,2� and fk ·e3=0,
the 3D extension of the 2D analysis we propose is very simple and straightforward:

��s� = − p� + �̃�f� = �− p + �̃11
�f� �̃12

�f� 0

�̃12
�f� − p + �̃22

�f� 0

0 0 − p
�

e ,e ,e

. �42�
1 2 3
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V. COMPARISON WITH EXPERIMENTS

A. Previous experimental studies

In previous experimental works, the rheology of an industrial SMC was analyzed
under various homogeneous testing conditions �Dumont et al., 2003; Le Corre et al.,
2002�. The tested material was standard SMC �LP 606� supplied by Mecelec Composite
and Recyclage �Tournon, France�. Produced sheets were made of a polyester-based paste
matrix �19.6wt % of polyester resin, 1.56wt % of styren, 62.07wt % of mineral charge of
CaCO3 of mean diameter 2 �m, 16.77wt % of other additives� and glass fiber bundles
�length l=25 mm, cross sections corresponding to those sketched in Fig. 2� that were
randomly oriented in the plane of the 2.5 mm-thick sheets. For that purpose, a specific
rheometer was developed allowing one to perform homogeneous simple compression
�sc�, plane strain compression �ps� �i.e., the suspension is constrained to flow inside a
channel� and shear tests at room temperature, for a wide range of constant imposed strain
rates �from 10−3 to 1 s−1� and volume fractions of bundles f �f� �from 0.035 to 0.188�. The
samples used with such rheometers were sufficiently large to avoid possible size effects
induced by the length of the bundles. In the following, we will only be interested in
results obtained in simple and plane strain compression tests. For these two homogeneous
testing conditions, assuming �i� incompressibility and �ii� initial in-plane isotropy of the
sheets, the homogeneous stress and strain rate tensors are

��s� = �33sc
�s� e3 � e3, D�s� = D33

�s��− 1
2e1 � e1 − 1

2e2 � e2 + e3 � e3� �43�

and

��s� = �22ps
�s� e2 � e2 + �33ps

�s� e3 � e3, D�s� = D33
�s��− e1 � e1 + e3 � e3� �44�

during the simple compression �sc� and plane strain compression �ps� experiments, re-
spectively. Typical results obtained from �sc� and �ps� experiments are given in Fig. 7.
The graphs plotted in this figure show the axial stresses �33sc

�s� ,�33ps
�s� , and lateral stress

�22ps
�s� , as functions of the axial Hencky strain �33=ln�h0 /h�, h0 and h being the initial and

FIG. 7. Typical experimental response of SMC of fiber content f �f�=0.188 �Dumont et al., 2003�: simple
compression test �a� and a plane strain compression test �b�, both performed at an axial strain rate D33

=0.01 s−1-Comparison with the results of the micro-macro model.
current thickness of the sheets. Note that for the rest of the document, compressive
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stresses, strain-rates and strains will be taken as positive. Stresses first exhibit a sharp
increase and rapidly reach a threshold stress denoted �ii, directly deduced from the ��
−�� curves presented in Fig. 7: during this stage, air as well as styrene entrapped inside
the SMC is expelled, and the initial wavy surface of the sheets is flattened. From the
threshold stress, the SMC effectively starts to flow in the rheometer: in the following, we
will analyze results from these threshold stresses. Experimental results are summarized in
the following

�1� Threshold stresses are power-law functions of the axial imposed strain rate D33.
Introducing D0 a characteristic strain rate of 1 s−1, this yields to

�33sc
�s� = 
33ps�D33

�s�

D0
	n−1

D33
�s� in simple compression, �45�

�33ps
�s� = 
33ps�D33

�s�

D0
�n−1

D33
�s�

�22ps
�s� = 
22ps�D33

�s�

D0
�n−1

D33
�s�

in plane strain compression. �46�

�2� Whatever the deformation mode ��sc� or �ps��, the investigated bundle contents �ex-
cept for the bulk matrix� and imposed strain rates, the power-law exponent n takes a
constant value of 0.44 at room temperature.

�3� For strain rates ranging from 10−3 to 10 s−1, the stress levels recorded for the bulk
pasty matrix �without bundles� were also power-law functions of the strain rate �Le
Corre et al., 2002�, but with a power-law exponent of 0.58. Such a difference be-
tween the bulk matrix and the SMCs could be explained by the arguments developed
in Sec. II C 3 �power-law valid only within a restricted strain rate range, structural
changes or particle size effects affecting the rheology of the pasty matrix in the
entrapped zones�.

�4� The threshold viscosities 
33sc ,
33ps, and 
22ps strongly depend on the bundle con-
tent, those dependencies being well described by the following second-order poly-
nomial functions:


33sc


ref
= 0.86 + 86f �f� + 860f �f�2

, �47�


33ps


ref
= 1 + 98f �f� + 980f �f�2

, �48�


22ps


ref
= 0.5 + 67f �f� + 670f �f�2

, �49�

where 
ref=0.18 MPa.s is the measured axial viscosity of the polymer matrix �f �f�

=0� for a plane strain compression test.
�5� During the deformation, stress �33sc

�s� remains approximately constant during the �sc�
experiments, whereas for the �ps� experiments, a slight increase of the stresses �33ps

�s�

and �22ps
�s� is observed �see Fig. 7�.

B. Identification of the model parameters

In order to compare the previous experimental results with the predictions of the

micro-macro approach, various REVs similar to those depicted in Fig. 5 were first gen-
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erated with the appropriate bundle geometry parameters �l ,dmin, and dmax�, contents f �f�

and with random planar orientations, following the generation procedure summarized in
Sec. IV A. Then, in accordance with property �29�, the power-law exponent m of the
viscous local interaction efforts �13� and �16� was set to 0.44, i.e., the power law expo-
nent n observed at the macroscopic level. Moreover, the shear viscosity of the entrapped
matrix 
�e� was arbitrarily set to 0.055 MPa s: this value is consistent with that obtained
during rheometry experiments performed on the paste matrix �Dumont et al., 2003; Le
Corre et al., 2002�.

The two remaining constitutive parameters to be identified are �, the averaged sheared
thickness, and �*, the parameter that governs the height of the control volume for the
determination of the density of connections inside the suspension. As evident from Eq.
�41�, both have an influence on the computed stresses: the influence of � on ��s� is
O�1/�m�, whereas �* increases the stresses in a linear way. Figure 8 represents the range
of admissible couples �� ,�*� that induce a predicted threshold stress identical to that
recorded during a simple compression experiment achieved on a SMC sample, i.e., �33sc

�f �f�=0.188, D33
�s�=−0.01 s−1�. To determine this surface, a first arbitrary guess of the

sheared thickness �0 was fixed to 5�10−3 mm. Its associated parameter �0
*=4 was then

determined by simple identification of the predicted threshold stress �33sc0 with the ex-
perimental one. From this first admissible couple ��0 ,�0

*�, one can deduce all the other
admissible couples �� ,�*� by

�* =
�33sc

�33sc0
� �

�0
	m

�0
* �50�

This equation represents the midsurface in Fig. 8: the upper and lower bounds of the

FIG. 8. Admissible range of values of parameters � and �* determined from a unique simple compression test
�Dumont et al., 2003; Le Corre et al., 2002�.
surface were determined considering the systematic scattering of ±20% recorded during
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the experiments �Dumont et al., 2003�. Servais et al. have tried to estimate the averaged
sheared thickness � in highly concentrated glass bundles suspensions with thermoplastic
matrix �Servais et al., 1999a, 2002�. They reported values ranging from 0.07 to 2.8
�10−3 mm for bundles where cross section and length are not very different from ours.
Using such estimates, the value of � was then fixed to 2�10−3 mm, leading to a value of
�* of 3 �see Fig. 8�. For the rest of the document, it was assumed that these values
remained constant, whatever the bundles content, the deformation mode, and the imposed
strain rate.

C. Comparison at the beginning of the flow

Given the values of constitutive parameters, a first set of numerical experiments was
achieved and compared to experimental results obtained with the SMC at the beginning
of the flow, i.e., at the threshold state

�1� The influence of the volume fraction of bundles on experimental and predicted
results is given in Fig. 9. This figure shows the evolution of experimental and com-
puted ratios 
33sc /
ref ,
33ps /
ref and 
22ps /
ref with the volume fraction of bundles
f �f�. To obtain the computed threshold viscosities, simple and plane strain compres-
sions were simulated with random microstructures at a compression rate D33

�s�

=1 s−1: as it was proved that the suspension was a power-law fluid, these numerical
experiments directly give the threshold viscosities �see for example the form of the
power-law �45��. Whatever the deformation mode, predictions are in rather good
agreement with the experiments when the volume fraction of bundles is high �f �f�

�0.1�: this is the zone where the developed micro-macro approach holds. At lower
bundle content �f �f��0.1�, the modeling of the suspension behavior could certainly
be improved by adding to the overall stress tensor stress contributions accounted for
in the theories of dilute or semidilute suspensions �Gibson and Toll. 1999; Sou-

FIG. 9. Evolution of the normalized threshold viscosities with the volume fraction of bundles, comparison with
experimental results obtained on an industrial SMC �Dumont et al., 2003�: �a� axial component in simple
compression �33sc�, �b� axial component in plane strain compression �33ps�, �c� lateral component in plane
strain compression �22ps�.
loumiac and Vincent, 1998�.
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�2� Figure 10 clearly reveals the influence of the axial strain rate D33
�s� on the experimen-

tal and computed threshold stresses in simple or plane strain compressions. This
figure also underlines the rather good correlation between experimental and pre-
dicted values.

�3� A scattering of the numerical results of about ±5% is systematically observed, as
evident in Figs. 9 and 10. Such a discrepancy is ascribed to two combined reasons:
�i� the random generation process used to build the bundles network and �ii� the use
of only two very simple macroscopic quantities for the characterization of the gen-

erated networks, i.e., f �f� and Ã: it is well known that f �f� and Ã only give rather
coarse information and are not sufficient to fully characterize such microstructures
�Batchelor, 1974�.

D. Influence of the current orientation of the bundles

In a second stage, several bundle networks with the same fiber volume fraction �f �f�

=0.188� and different orientations were generated and submitted to a plane strain com-

pression test. The imposed strain rate D̃�s��s−1� was then chosen such as

D̃�s� = e1 � e1. �51�

Gaussian distributions of angles with a main direction along e1 or e2 and different stan-
dard deviations were used in order to obtain all the possible in-axis orientations for this
kind of kinematics. This results in microstructures characterized by an almost diagonal

orientation tensor Ã with values of A11 ranging from 0, for perfectly aligned orientation
along e2, to 1, for perfectly aligned orientation along e1.

In Fig. 11�a�, we analyze the influence of the current orientation state �equivalent to a
snapshot in a time evolution problem�, measured by A11, on the computed components of
��f�. In this figure, given a stress component, each point corresponds to a generated fiber
net �about 85 networks with different orientations were used to obtain those data�. As

FIG. 10. Influence of the axial strain-rate D33 on the threshold stresses for a random suspension with various
bundle content, comparison with experimental results of Dumont et al. �2003�.
clear from this figure, the current bundle orientation noticeably influences the macro-
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scopic mechanical behavior. The stress ratio �11
�f� /�22

�f� is about 2.4 for random planar
orientations �A11=0.5�, reaches values higher than 50 for A11 close to 1, and stresses tend
to zero when A11 tends to zero. It is worth noting the scattering of the results and that the
shear stress �12

�f� is never exactly null, but always stays small compared to the main
components �11

�f� and �22
�f�: this is once again imputed to reasons given in Sec. V C 3.

The evolution of bundle orientation was analyzed in the same way through the evo-

lution of Ȧ11 in terms of A11 and plotted in Fig. 11�b�. Results here again underline the
great effect of the current orientation state on the evolution of bundle orientation: as
already observed in dilute and semidilute fiber suspensions, �i� the bundles tend to align
in the direction of the flow �e1�, �ii� the higher the deviation of A11 from 0.5, the lower the

rate Ȧ11 �Advani and Tucker, 1990�.

E. Comparison during the flow

Lastly, the predictions of the micro-macro model during simple and plane strain com-
pressions were compared to experimental results obtained on the SMC.

�1� For the simple compression simulation, the initial isotropic orientation tensor Ã was

first proved to remain constant during the deformation �Ȧij �0�, so that the computed
viscous stress �11

�f� �=�22
�f� for isotropic microstructures� corresponds to that given at

the beginning of the deformation, i.e., the threshold stress. Hence �11
�f� was first

estimated at an axial strain rate D33
�s� of −1 s−1, and then modified for the experimental

prescribed strain rate according to the property �29�.
�2� For the plane strain compression along e1, it was first assumed that during the

deformation of the sample, the orientation of the bundle network evolved from an
initial isotropic state �i.e., perfectly random� to an oriented state such as the main
orientation always stays in direction e1. The simulation was then achieved using the
fitted curves presented in Fig. 11: for �11�A11� we used a second-order polynomial fit,

for �22�A11� a fourth-order one, and for Ȧ11�A11� we chose the expression

Ȧ11,0�1− �2A11−1�2, with Ȧ11,0=0.26. Note that the fitting parameters have no physi-

FIG. 11. Influence of the orientation intensity A11, for fiber networks �f �f�=0.188� undergoing a plane strain

deformation along e1, �D11
�s�=−D33

�s�=1s−1�, and for m=0.45: �a� components of �̃�f�, �b� components of Ã
˙

.

cal meaning, they were just used here for the comparison with experimental data.
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These curves allow one to determine at any time step t the viscous stresses �11
�f� and

�22
�f� as well as the orientation rate Ȧ11, given the actual orientation A11 and the

imposed strain rate D33
�s�=D11

�s�=−1 s−1. The corresponding viscous stresses and orien-
tation rate at the imposed experimental strain rate are then calculated thanks to
properties �29� and �40�, respectively. The time evolution of A11 was computed by an

ordinary differential equations solver, using the fitted expression of Ȧ11�A11�.

Figure 7�a� then shows the evolution of the experimental and predicted total axial
stress �33

�s� during a simple compression test performed at D33
�s�=−0.01 s−1 �f �f�=0.188�.

Figure 7�b� does the same for total stresses �22
�s� and �33

�s� and the orientation component
A11 in the case of a plane strain compression test performed at D33

�s�=−0.01 s−1 �f �f�

=0.188�. As visible from these figures, the present model rather well describes the ex-
perimental trends. In the particular case of the plane strain compression, it predicts an
increase in stresses due to the increasing orientation of fiber in the direction of flow. This
trend is well observed experimentally for the lateral stress �22ps, however it is not really
clear concerning the axial stress �33ps. This point should be more precisely analyzed by
additional experiments and would require to be checked for other bundle suspensions.
Our calculations also provide explicitly the evolution of orientation during the flow which
was not measured in Dumont et al. �2003�. Further experimental investigations should be
carried out to confirm these predictions of the model.

VI. DISCUSSION

To establish the micro-macro model, we have postulated a priori in Sec. III B that the
equivalent macroscopic media of the considered bundles networks were usual Cauchy
ones : this implies the local bundle-bundle interaction moments to be small �O���� with
respect to the moments of bundle-bundle interaction forces. To check a posteriori the
validity of such an assumption, three bundle networks with a bundle content of 0.188 and
with three different orientations �random, rather and very oriented along e1� were sub-
mitted to four elementary mechanical loadings, i.e., plane strain compression along e1,
plane strain compression along e2, pure shear in P, and simple compression. From these
macroscopic loadings, the ratio mb

r was formed for each bundle b of the networks:

mb
r =

�b�C�b��Mk�

�b�C�b�
sbeb � fk

. �52�

This dimensionless ratio gauges the importance of local interaction moments active on a
bar b with respect to the moment of forces acting on the same bar. Typically, the higher
the averaged value of mb

r in the REVs, the less valid the assumption of an equivalent
macroscopic Cauchy medium. Figure 12 plots the evolution the fraction of bundles Nx /N
matching a condition x on mb

r for three networks with different bundle orientations in
terms of this condition, expressed in % here �mb

r �x% �. Such a representation gives an
idea of the overall distribution of mb

r in a given network. This figure, plotted for the four
different simple flow kinematics, shows that for most fiber bundles and whatever the
average orientation of the network, the value of mb

r is lower than 5%. For the random and
rather oriented cases �Figs. 12�a� and 12�b��, one even checks that more than 80% of the
bundles match mb

r �2.5%, which is the order of the scale separation parameter �. It is
worth noticing that this trend is totally independent of macroscopic strain-rate. Those
results are indeed in total agreement with the modeling assumptions adopted in this work

�see Sec. III B� Figure 12�c� also shows that local moments become less and less negli-
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gible as the orientation goes stronger. In this case, even if the major part of the histogram
is below 5%, i.e., O���, a greater number of moments ratios is above 5%. The effect of
local moments on the macroscopic behavior could therefore become non-negligible for
very oriented microstructures. Nevertheless, for industrial bundles suspensions such as
GMT or SMC, these high orientation states are rarely encountered.

VII. CONCLUDING REMARKS

A numerical analysis based on the homogenization of discrete and periodic structures
has been used to investigate the relationships between the microstructure and the macro-
scopic rheological properties of concentrated suspensions of fiber bundles having a mean
planar orientation. The very high bundle content is such that bundles can be seen as
forming a network of connected bundles that interact by direct mechanical contacts forces
and moments during the deformation of the suspension. Nonlinear power-law type vis-
cous bundle-bundle interaction mechanisms were taken into account in the modelling,
and a rigid motion assumption of the bundles was postulated in the mean plane of the
suspension. In order to study the rheology of suspensions close to industrial short fiber
composites such as GMT or SMC, a generation procedure of REVs has been proposed to
build idealized concentrated suspensions having different bundle orientations and volume
fractions. This enabled us, by means of “numerical rheometry experiments” performed
for various flow kinematics, to highlight and quantify the strong influence of microstruc-
tural parameters on the mechanical behavior of the suspensions.

A first interesting result was obtained concerning the influence of the macroscopic
strain rate on the macroscopic stress tensor. It was shown that if the microscopic bundle-

FIG. 12. Evolution of the fraction Nx /N, where Nx is the number of bundles such as mb
r �x and abscissa x is

a condition expressed in %—different bundle networks with f �f�=0.188 and m=0.44, submitted to four macro-
scopic strain rates: plane strain along e1, plane strain along e2, pure shear in direction 12, simple compression-
�a� random orientation �A11=0.5, A12=0�, �b� rather oriented �A11=0.82, A12=−0.01�, �c� very oriented �A11

=0.92, A12=−0.009�.
bundle interactions are of power-law viscous type, the whole suspension has a power-law
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fluid behavior, with a power-law index identical at the microscopic and macroscopic
levels. It was also proved that the rate of the second-order orientation tensor is an
homogeneous function of a degree one with respect to the macroscopic velocity gradient
tensor, whatever the nature of the interaction viscous bonds �linear or power-law�. Note
that these two fundamental properties are proved theoretically, independently of the
REVs generation procedure. Furthermore, thanks to the analysis of the general form of
the constitutive equations of the equivalent continuum, the stress levels were shown to be
quadratic functions of the volume fraction of bundles. This is directly induced by the
method used to detect bundle-bundle contacts in the generated REVs, a method that
follows the statistical tube model framework �Toll, 1993�. At last, it was also shown that
for the suspension under consideration, local interaction moments can be considered as
small quantities with respect to the moments of interaction forces, so that the suspensions
can be reasonably seen as usual Cauchy media at the macroscopic level.

It must be pointed out that the proposed model only requires a small set of constitutive
parameters, all of them being directly linked to the physics and the geometry at the
bundle scale. A simple methodology has been given for their estimation. The predictions
of this model of idealized concentrated suspensions were then compared with results
obtained with industrial SMC materials. Despite the very simple assumptions postulated
at the bundle scale, results show a fairly good agreement concerning the predicted thresh-
old viscosities or stresses that were measured in simple compression or plane strain
compression tests, in the interesting domain of volume fraction. The strong influence of
the current bundle orientation on the stress as well as on the orientation rate tensor was
also highlighted in the example of a plane strain compression. At last, comparison with
experimental results show that the present model can also predict the evolution of stresses
during the flow.

However, the very simple geometrical, kinematical, and mechanical assumptions
stated at the bundle scale should be further validated or improved. The possible improve-
ment could for example be achieved performing rheometry experiments on a well-chosen
highly concentrated suspension that would allow the analysis of the motion of the
bundles during the flow. This was unfortunately impossible with the opaque SMC matrix.
The analysis of such a model material could give answers to the following questions :
what is the geometry, the microstructure, and the rheology of the entrapped medium?
�How� do the contact zones evolve? �How� do the bundles flatten? �How� do the bundles
bend in the plane of the sheet?

Moreover, further systematic numerical rheometry experiments are needed to explore
more precisely in a wider range of flow kinematics and microstructural parameters: �i� the
macroscopic stress tensor, �ii� the evolution of the orientation of the bundles, �iii� the
difference between the linear and power-law behaviors, �iv� the relation between bundle
orientation and mechanical anisotropy, �v� the impact of generation strategy. This would
constitute a precious database that could be compared with both existing linear and
nonlinear macroscopic stress models developed for semidilute and concentrated fiber/
bundle suspensions, and to existing models of fiber orientation evolution.
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