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ABSTRACT: A method is proposed to compute the macroscopic flow of non-Newtonian fluids through highly
deformed woven fabrics. The method is divided in two steps. Firstly, the shear deformation of a textile rein-
forcement is studied from a mesoscale numerical analysis. The second step consists in simulating the mesoscale
flow of the polymer through the as-deformed woven fabrics. Numerical results emphasise the drastic changes
of the permeation law when the considered plain weave fabric is sheared. The influence of the flowing fluid
rheology is also emphasised in case of generalised Newtonian fluids. A method is proposed to formulate the
macroscopic flow law.
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1 INTRODUCTION

It is essential to accurately predict polymer flows in
fibre preforms for a number of liquid molding pro-
cesses among which the Resin Transfer Moulding
process (RTM). Nevertheless, the determination with
a high precision of the flow description, still remains
difficult. Woven fabrics’ manufacturers can provide
a material property list which sometimes contains the
permeability of fabrics, usually measured when fab-
rics are not deformed:

• During the preforming stage of RTM woven
fabrics undergo mechanical loadings which can
induce very large deformations of the textiles
of which dominant mode is the shear deforma-
tion [1]. This affects their permeability and
has to be understood and quantified. Indeed,
if the relation between textile pre-deformation
and permeability is determined and the defor-
mation pattern of the fabrics is known, the re-
lated permeability pattern can be drawn for the
entire reinforcement in order to better predict

the flow within the preform.

• The permeability is a property that is only ded-
icated to the flow of Newtonian fluids through
porous media. However, liquid polymers may
exhibit non-Newtonian behaviour (thermoset
polymers as they are curing or thermoplastic
polymers with long polymer chains), especially
at the high shear rates they are subjected when
they flow through networks of fibres. Under
such circumstances, their flow through textiles
reinforcement may severely deviates from that
of Newtonian fluids [6, 3, 5].

Within that context, a method is proposed in this
work in order to determine the macroscopic flow law
for non-Newtonian fluids flowing through highly de-
formed woven fabrics. The method is divided in two
steps. Firstly, the shear deformation of a textile re-
inforcement until the shear locking is studied from a
mesoscale analysis achieved with a Representative El-
ementary Volume (REV) of the periodic textile. The
second step consists in simulating the mesoscale flow
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through the as-deformed solid REV’s in order to study
the flow of the polymer through the woven fabrics.
Numerical results emphasised the drastic changes of
the permeation law when the considered plain weave
fabric was sheared, such as its loss of transverse
isotropy. The influence of the flowing fluid rheology
is also emphasised in case of generalised Newtonian
fluids. A method is proposed to formulate the macro-
scopic flow law, within the framework of the theory
of anisotropic tensor functions and using mechanical
iso-dissipation curves.

2 PREDEFORMATION OF THE TEXTILE

We have considered here a very simple textile rein-
forcement. It is a periodic glass plain weave which is
balanced since the warp and the weft yarns have iden-
tical geometrical and mechanical properties. Its ge-
ometry is based on circle arcs and tangent segments.
It is simple but ensures consistency of the model,
which means that yarns do not penetrate each other
[2]. A scheme of the periodic solid REV of such a
mesostructure is given in figure 1(a).
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Figure 1: Solid REV of the studied plain weave : geometry and
FE mesh before deformation (a) and after a pre-shear angle of

53◦ in the (e1, e2) plane (b).

As extensively described in [1], this solid REV
was subjected to a significant in-plane shear. In or-
der to compute its corresponding deformed shape, fi-
nite elements calculations were performed with the
commercial FE code Abaqus. Briefly, the following
assumptions were stated to run the simulation:

• Very large transformations were taken into ac-
count

• Consistent yarn-yarn contacts were assumed to
induce Coulombic friction forces (dry friction
coefficient f = 0.2)

• Yarns were assumed to behave like transversely
isotropic hypoelastic continua, which symme-
try direction is locally parallel to the direction
of fibres within the yarns. Hence, their mechan-
ical behaviour is given by the following consti-
tutive relation:

σ∇ = C : D (1)

where C is the incremental stiffness tensor (re-
quiring 5 constitutive parameters, i.e. longitu-
dinal El, νl and transverse Et, νt Young moduli
and Poisson ratios, and a shear modulus G), D
is the strain rate tensor and σ∇ is an objective
derivative of the Cauchy stress tensor σ. Such
a derivative is computed by following the local
rotation of fibres.

• Calculations were achieved by subjecting the
whole solid REV to a mean macroscopic dis-
placement gradient corresponding to an in
plane shear. Thereby, the periodic fluctua-
tions of the displacement required to accom-
modate the imposed mechanical loading were
computed.

As an example, figure 1(b) give the deformed shape
of the solid REV after an imposed shear angle very
close to the locking angle [1].

3 FLUID FLOW MESOSCALE SIMULATION

From the as-deformed solid REV’s, associated fluid
REV’s were then built in order to study the flow of the
polymer through them. Briefly, solid REV’s obtained
with the FE code Abaqus are represented by means of
meshes for each individual yarn. Those meshes have
first to be transformed in solid entities which are then
assembled. Once a unique solid entity is obtained,
it must be subtracted from a well-chosen volume to
give the fluid REV. Keeping same periods as the solid
ones would generate difficulties to construct the cor-
responding fluid REV’s. The fluid period has then
been adapted, in a appropriate way to easily impose
periodic boundary conditions (see figure 2).
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Figure 2: Fluid REV’s corresponding to the solid REV’s
sketched in figure 1.

Therefrom, the mescocale slow flow of a gener-
alised Newtonian fluid through the as-deformed solid
REV’s was extensively analysed by using an upscal-
ing technique which is described in [4]. For a sake
of simplicity, we have considered here a power-law
fluid, which viscosity µ is simply expressed as:

µ = µ0γ̇
n−1 (2)

γ̇ being the generalised shear strain rate, µ0 the con-
sistency and n the strain rate sensistivity. Hence, by
assuming sticking boundary conditions at the fluid
solid interfaces, the following fluid flow problem de-
duced from the upscaling process was solved within
the fluid REV’s:

∇·v̄ = 0, (3)

2µ0∇·
(

˙̄γ
n−1

D̄
)

= ∇εp +∇p̄, (4)

where the so-called first order pressure gradient ∇p̄
is constant and given in the entire fluid REV’s, and
where the first order velocity field v̄ as well as the
fluctuation pressure εp are the periodic unknowns.
This boundary value problem was solved with a mixt
pressure-velocity formulation implemented in the fi-
nite element commercial code Comsol.

4 STUDY OF THE MACROSCOPIC FLOW LAW

It can be proved from the upscaling process [4],
that the macroscopic description corresponding to the

above mesoscale fluid flow problem is expressed by
the following macroscopic mass and momentum bal-
ance equations:

∇·〈v̄〉 = 0, (5)

∇p̄ = f(〈v̄〉, µ0, n, mesostructure), (6)

where the macroscopic velocity field 〈v̄〉 is the vol-
ume average of the mesoscopic velocity field v̄, and
where f is a volumetric viscous drag force. Moreover,
f can be expressed as the gradient of a viscous dissi-
pation potential 〈Φ〉 with respect to the macroscopic
velocity field 〈v̄〉 [4]:

f = −∂〈Φ〉
∂〈v̄〉 = −µ0

lc

(
veq

φlc

)n
∂veq

∂〈v̄〉 , (7)

where lc is the characteristic length of sheared fluid
at the mesoscale, φ can be defined as the “active”
volume fraction of pores effectively contributing to
the flow: they can be obtained by simulating and
analysing the flow in the e1 direction. The positive
scalar veq also appearing in the last equation is an
equivalent macroscopic velocity: any iso-equivalent
velocity surface (iso-veq) plotted in the velocity space
corresponds to an iso-dissipation surface and to an
iso-potential surface (iso-〈Φ〉). Fitting with a suit-
able phenomenological form numerical iso-veq sur-
faces deduced from mesoscale simulations allows to
obtain the whole macroscopic flow law. Indeed, in ac-
cordance with (7), the volumetric viscous drag force
f is normal to the iso-veq surfaces.

5 APPLICATION TO THE PLAIN WEAVE

For the considered mesostrucutres, which exhibit or-
thotropic macroscopic flow law, the following contin-
uous form of veq is proposed [4], here expressed in the
principal reference frame (e1, e2, e3) :

vm
eq = vm

eqa + vm
eqb, (8)

where




vma
eqa = |v1|ma + (|v2|/A)ma

veqb = |v3|/B
m = (mb|v1|2 + mc|v2|2) / (|v1|2 + |v2|2)

(9)
This form involves five additional constitutive param-
eters. A and B can be directly deduced from the
mesoscale simulation of the flow along the e2 and
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e3 directions, respectively. The curvature parame-
ters ma,mb and mc are chosen to fit the above con-
tinuous iso-veq surface to numerical ones. The pro-
posed expression of veq was compared to numerical
iso-dissipation surfaces obtained from numerical sim-
ulation achieved on the REVs shown in figure 2, for a
Newtonian (n = 1) and a power-law fluid (n = 0.3).
Results which are given in figure 3, conjure up the
following comments:
• The proposed form of veq (continuous surfaces
given by (7)) allows a nice fit of numerical iso-
dissipation surfaces (stars) plotted in the velocity
space.
• The isodissipation surface exhibits transverse
isotropy for the non deformed REV and when the
fluid is Newtonian (see figure 3(a)). Such a symme-
try is broken for the same REV and for a power-law
fluid (see figure 3(b)): the macroscopic flow law then
exhibits orthotropy [3].
• Shearing the plain weave (i) increase the anisotropy
and (ii) induce a more difficult flow. Indeed, com-
pared to the non deformed isodissipation surface plot-
ted in figure 3(b), the isodissipation surface obtained
for the same fluid but with the sheared REV is (i) flat-
tened in the e3 direction and (ii) smaller (figure 3(c)).
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Figure 3: Numerical (stars) and fitted (continuous surfaces)
isodissipation surfaces (100 W m−3) plotted in the velocity

space and obtained (a) for the non deformed plain weave (figure
1(a)) and for a Newtonian fluid (µ0 = 1 Pa s, n = 1), (b) for the
non deformed plain weave and for a power-law shear thinning
fluid (µ0 = 1 Pa sn,n = 0.3) (c) for the sheared plain weave
(figure 1(a)) for a power-law shear thinning fluid (µ0 = 1 Pa

sn,n = 0.3).
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