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Abstract Fine prediction of the elastic properties of

paper materials can now be obtained using sophisti-

cated fibre scale numerical approaches. However,

there is still a need, in particular for low-density

papers, for simple and compact analytical models that

enable the elastic properties of these papers to be

estimated from the knowledge of various structural

information about their fibres and their fibrous

networks. For that purpose, we pursued the analysis

carried out in Marulier et al. (Cellulose 22:1517–1539,

2015. https://doi.org/10.1007/s10570-015-0610-6)

with low-density papers that were fabricated with

planar random and orientated fibrous microstructures

and different fibre contents. The fibrous microstruc-

tures of these papers were imaged using X-ray syn-

chrotron microtomography. The corresponding 3D

images revealed highly connected fibrous networks

with small fibre bond areas. Furthermore, the evolu-

tions of their Young’s moduli were non-linear and

evolved as power-laws with the fibre content. Current

analytical models of the literature do not capture these

trends. In light of these experimental data, we devel-

oped a fibre network model for the in-plane elasticity

of papers in which the main deformation mechanisms

of the micromechanical model is the shear of the

numerous fibre bonds and their vicinity, whereas the

fibre parts far from these zones were considered as

rigid bodies. The stiffness tensor of papers was then

estimated both numerically using a discrete element

code and analytically using additional assumptions.

Both approaches nicely fit the experimental trends by

adjusting a unique unknown micromechanical

parameter, which is the shear stiffness of bonding

zones. The estimate of this parameter is relevant in

light of several recently reported experimental results.
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Introduction

Paper is one of the most widespread man-made bio-

based fibrous materials that is used in many engineer-

ing fields including packaging (Twede et al. 2014;

Viguié et al. 2011), health and medical care (Oyola-

Reynoso et al. 2015), energy (Jabbour et al. 2013),

filtration, fluid purification (Macfarlane et al. 2012),

building or other structural applications (Martoı̈a et al.

2017). The main constituents of paper are lignocellu-

losic fibres (mainly extracted from wood) that are

strongly linked together by cohesive bonds (Hirn and

Schennach 2015) in the form of fibrous networks with

planar fibre orientation (Niskanen 2011; Alava and

Niskanen 2006). Papers with a wide diversity of

physical and mechanical properties can be fabricated

by tailoring the nature of the raw materials and the

papermaking conditions (e.g., type and geometry of

fibres, refining, forming, pressing and drying condi-

tions, adding mineral fillers and other chemical

additives…). However, the links between the paper-

making parameters, the resulting fibrous microstruc-

tures and the product performances are still not fully

evidenced. For example, the Young’s modulus of low-

density papers often follows a non-linear evolution

with their density (Rigdahl et al. 1983; Niskanen 2011;

Park et al. 2020;Wu and Dzenis 2005), the microstruc-

tural and micromechanical origins of which are still

questioning. Thus, building the aforementioned links

constitutes a subject of intense research. In particular,

there is still a need for relevant multiscale mechanical

constitutive models that could (1) account for the

complexity of paper microstructures and related

deformation mechanisms and (2) be implemented in

numerical simulation tools (Simon 2020) for com-

puter-aided design of paper applications or for mon-

itoring of the papermaking process itself.

For that purpose, numerous theoretical studies have

been conducted during the last decades. In most cases,

paper materials are modelled as planar networks of

deformable elastic fibres (Cox 1952; Page and Seth

1980; Schulgasser 1981; Schulgasser and Page 1988;

Åström et al. 2000; Alava and Niskanen 2006;

Godinho et al. 2019). These approaches often assume

that the stiffness of the fibre bonds is relatively high (or

infinite) so that the stretching, bending and shear of

fibres far from bonds are the governing deformation

mechanisms. The proposed analytical models are

interesting because they clearly emphasize the role

played by the content, geometry and mechanics of

fibres. However, they do not account for the complex-

ity of the geometry and micro-mechanics of fibre

bonds and their close vicinity.

To better understand the effects of deformation

micro-mechanisms on the mechanics of papers, many

fibre scale numerical studies were conducted (Räisä-

nen et al. 1997; Åström et al. 2000; Heyden 2000; Wu

and Dzenis 2005; Kulachenko and Uesaka 2012;

Kulachenko et al. 2012; Mansour et al. 2019; Mota-

median et al. 2019; Brandberg and Kulachenko 2020).

For instance, Heyden et al. performed numerical

simulations using networks of elastic beams to inves-

tigate the effects of the volume fraction, orientation,

length, curl, and stiffness of fibres on the in-plane

stiffness of low-density papers (Heyden and Gustafs-

son 1998; Heyden 2000). Similarly, using 2D network

simulation, Wu and Dzenis (2005) highlighted the

pronounced non-linear evolution of the Young’s

modulus with the fibre content of low-density papers

with planar random orientation. These analyses were

recently extended for denser papers (Kulachenko et al.

2012; Motamedian et al. 2019; Brandberg and

Kulachenko 2020, 2017; Borodulina et al. 2018;

Motamedian and Kulachenko 2019). Some of these

studies showed that the geometry and the mechanics of

fibre bonds could significantly contribute to the

macroscale mechanical response of papers (Boro-

dulina et al. 2018; Brandberg and Kulachenko 2017;

Motamedian and Kulachenko 2019). In particular, for

low-density fibrous networks made of stiff elastic

fibres connected with sufficiently soft elastic bonds,

Brandberg and Kulachenko (2017) showed that the

contribution of the elastic energy of bonds to the

overall elastic energy of fibrous networks was pre-

dominant compared with the other contributions

related to the fibre deformation modes (bending,

shear, tension). Bearing in mind that the volume

fraction of bonding zones is much smaller than the

volume fraction of the rest of the fibrous network,

these results demonstrate that the intrinsic elastic

energy stored in bonds is much higher than the

intrinsic energy stored elsewhere. Thus, these numer-

ical results confirm the trends reported in several

complementary experimental studies (Page et al.

1962, 1979; Page and Seth 1980; Nanko and Ohsawa

1989; DeMaio et al. 2006; DeMaio and Patterson

2008; Magnusson 2016) and highlight (i) the central

role of fibre bond zones (the bonds and their vicinity)
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and (ii) the need of a proper characterisation of the

geometry and micro-mechanics of fibre bonds. This is

particularly true for low-density papers (Brandberg

and Kulachenko 2017).

On the one hand, noticeable progress has been

achieved purposely to characterise the mechanics of

individual fibre bonds thanks to micro-mechanical

testing devices (Fischer et al. 2012; Schmied et al.

2012; Jajcinovic et al. 2016). These tests are interest-

ing but still remain difficult to carry out as they require

the isolation of the bonds and well-controlled con-

straints to avoid any deformation of the two bonded

fibres. On the other hand, significant progress has also

been realised to finely characterise the paper

microstructures with 3D imaging techniques such as

microtome serial sectioning (Kappel et al. 2009) or

X-ray microtomography (Gregersen et al. 2001;

Rolland du Roscoat et al. 2005; Rolland du Roscoat

et al. 2007; Marulier et al. 2012; Marulier et al. 2015)

coupled with dedicated image analysis procedures

(Viguié et al. 2013; Wernersson et al. 2014; Boro-

dulina 2016; Krasnoshlyk et al. 2018). For instance,

we investigated the effect of forming, pressing and

drying conditions on several microstructure descrip-

tors of low-density papers from high resolution 3D

images obtained with X-ray synchroton microtomog-

raphy (Marulier et al. 2012, 2015). Unprecedented 3D

description of the geometries of individual fibres and

fibre bonds were obtained and discussed. However, we

did not fully analyse these interesting 3D geometrical

data, in particular concerning the geometry of fibre

bonds, and did not take this information into account

in a multiscale mechanical model to predict the

mechanical properties of papers.

Thus, the objective of this study is to propose

multiscale mechanical models for the elasticity of low-

density paper materials, taking into account the

descriptors of the microstructure that can be obtained

using in-depth characterisation of 3D images. For that

purpose, two types of low-density papers with in-plane

isotropic and orientated fibrous microstructures were

fabricated using unbeaten bleached and classified pulp

fibres. Their microstructures were characterised using

X-ray synchrotron microtomography (Marulier et al.

2015) and we herein completed the analysis of the 3D

images acquired previously. We also characterised

their tensile elastic properties. Combining these data

allowed relevant assumptions for the architecture of

fibre networks and their fibre scale mechanics to be

stated. Then, these features were upscaled using the

homogenisation with multiple scale asymptotic

expansions for discrete structures (Tollenaere and

Caillerie 1998; Le Corre et al. 2004). This method

proposes a rigorous framework to deduce the consti-

tutive properties and the balance equations of the

papers’ equivalent continuum media. It also provides

well-posed localisation problems to be solved on

representative elementary volumes (REVs) to esti-

mate their macroscale properties. These problems

were first solved numerically using the discrete

element method. Then, a second analytical multiscale

model was proposed using additional simplifying

assumptions. Predictions of the numerical and analyt-

ical models were compared with experimental data

and discussed.

Materials and experimental methods

Pulp fibres and related low-density papers

Unbeaten bleached and classified softwood pulp fibres

from maritime pine were used to fabricate papers

using the procedure already reported in Marulier et al.

(2012, 2015). These pulp fibres were chosen to limit

the complexity of the fibrous microstructures of the

papers. Some of them were red dyed to estimate the

fibre orientation distribution function of the processed

papers. Paper handsheets with planar random or

orientated fibrous microstructures were prepared using

a Rapid Köthen former (Karl Frank GMHB, Wein-

heim, Germany) and a dynamic handsheet former

(Techpap, Grenoble, France), respectively. Then, the

wet handsheets were pressed and consolidated

between blotters for 3 min at a prescribed wet pressing

pressure before being dried in the dryer of the Rapid

Köthen machine system for 6 min at 85 �C. Hence, the
as-processed papers did not exhibit any pronounced

in-plane shrinkage nor out-of-plane deformation. To

obtain papers with different volume fraction of fibres

/, the wet pressing pressure was varied from 0.1 to

1.3 MPa. The thickness and the basis weightG of each

handsheet were measured after consistent and con-

trolled storage (temperature = 23 �C and relative

humidity = 50% rh) to estimate the paper density qp
and their volume fraction of fibres / (Table 1).
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Microstructure characterisation

To characterise the in-plane orientation distributions

of fibres of the model papers, we identified more than

1200 red dyed fibres at the surface of the model papers

and determined the in-plane orientation angle w for

each segment of all scanned fibres (Marulier et al.

2015). In addition, the 3D microstructures of the

model papers were characterised using synchrotron X-

ray microtomography (ID 19 beamline, ESRF, France,

X-ray energy = 17.6 keV, scans with 1500 radio-

graphs, duration\ 5 min, voxel size = 0.7 lm3,

Paganin imaging mode used for the reconstruction,

field of view 1400� 1400� 500 lm3, one 3D image

per studied sample). From the 3D images, we

extracted some fibres and fibre bonds from the fibrous

networks to analyse qualitatively their morphology. In

addition, several microstructure descriptors of fibres

and fibre bonds were measured together with their

mean values (hereafter specified with a bar). Some of

them are depicted in the scheme shown in Fig. 1.

Among them are the length l, the orientation and the

curvature of centrelines of fibres, the thickness t and

the widthw of their cross sections (and the related fibre

aspect ratios r1 ¼ l=w, r2 ¼ w=t and r3 ¼ r1r2 ¼ l=t).

We also measured the number of fibre bonds per fibre

z, the typical width wb and the surface Sb of bonds as

well as the bonding degree ratio rb ¼ wb=w (see

Fig. 1). These descriptors are of particular interest in

the following sections. Also, it is worth noting that the

bond surfaces were only estimated geometrically from

the 3D images: no morphological information below

the voxel size could be obtained (0.7 lm3), nor

physico-chemical information at the macromolecular

scale.

Mechanical characterisation

Uniaxial tensile tests were performed on slender

rectangular specimens (mean width ¼ 10 mm and

mean initial gauge length ¼ 150 mm) at a constant

initial strain-rate _e = 0.001 s-1 using a commercial

horizontal tensile testing machine (Lorentzen and

Wettre No. 162, tensile tester). For the in-plane

orientated papers, tensile tests were performed along

the longitudinal and transverse directions, i.e., in the

two in-plane principal orientation directions of papers.

Before testing, paper samples were stored for at least

Table 1 Density qp and

volume fraction of fibres /
of the fabricated low-

density papers (/ was

estimated from qp and from

the density of pure cellulose

qc = 1500 kg m-3 with / �
qp=qc (Salmen and Fellers

1989))

qp (kg m-3) /

Papers with planar random fibre orientation 294 0.20

356 0.24

411 0.27

485 0.32

513 0.34

520 0.34

531 0.35

700 0.45

Papers with in-plane orientated fibres 100 0.05

150 0.1

232 0.16

296 0.20

327 0.22

348 0.23

404 0.27

465 0.31

491 0.33

495 0.33

519 0.35

537 0.36
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one day under controlled conditions: T = 23 �C and

50% rh. The Young’s moduli of the fabricated low-

density papers were then estimated for each specimen

following the procedure reported in Niskanen and

Krenlampi (1998). The Young’s moduli of in-plane

random and orientated papers were denoted E, EL and

ET , respectively.

Experimental results and discussion

Microstructures of papers and modelling their

fibrous connectivity

The 3D images shown in Figs. 2 and 3 give typical

features of the studied papers, fibres and fibre bonds.

From these images several important remarks can be

mentioned:

Fibre networks

Figure 1a shows that the paper sheets consisted in thin

(thickness ranging from 60 to 200 lm) and more or

less densely connected fibrous networks with mostly

planar fibre orientation in the midplane e1; e2ð Þ of the
sheets. The mean value of the out of plane angle of the

Fig. 1 Idealised representation of interacting and straight fibres i and j (of orientation vector pi and pj, length l, widthw, thickness t) and

their fibre bonds b. The idealised bonding surface Sb with its typical width wb is sketched in grey in the bottom right scheme

Fig. 2 3D images of a a fabricated low-density paper with

planar random fibre orientation and a fibre content / ¼ 0:323
and b a single fibre that was isolated from the rest of the fibrous

network
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fibre centrelines was 0� and the related standard

deviation did not exceed 2:5�. As shown in Fig. 3a, the
in-plane fibre orientation distribution is flat for the

sheets that were fabricated with the Rapid Köthen

former, revealing a planar random fibre orientation

(see the corresponding second order fibre orientation

tensor A (Advani and Tucker 1987) given in Fig. 3c).

Such a distribution exhibits a Gaussian-like shape for

sheets processed with the dynamic handsheet former

(Fig. 3b), with a preferred fibre orientation along the

machine or longitudinal direction.

Fibres

Figure 2a, b reveal that fibres were rather straight so

that each fibre i could be ascribed a mean tangent unit

vector pi to characterise its orientation. In addition,

fibres exhibited a ribbon-like shape and cross sections

with collapsed lumens. The fibres had a mean length

l � 2000 lm, a mean width w � 30 lm and a mean

thickness t � 6 lm, so that r1 � 67, r2 � 5 and

r3 � 335. These parameters were practically constant

regardless of the papermaking conditions. In addition,

fibres were weakly twisted (Fig. 2): the major direc-

tion of their cross sections (of mean dimension w) was

nearly parallel to the midplane e1; e2ð Þ of the sheets.

Lastly, thanks to the high spatial resolution of the 3D

images, it is possible to distinguish the presence of

kinks distributed all along the fibre length (Fig. 2b):

their origin could be related to the fibre extraction

process and/or to fibre/cell wall growth (Page et al.

1962; Nanko and Ohsawa 1989; Nyholm et al. 2001;

Eder et al. 2008).

Fig. 3 a, b Comparison of the in-plane fibre orientation

distributions measured from the fabricated low-density papers

with those obtained using the numerical generation process. (c,

d) Idealised REVs of fibrous networks (/ ¼ 0:15) with a planar
random fibre orientation (a) and a preferred fibre alignment

along the e1-direction (b)

cFig. 4 a, d Examples of 3D images (voxel size 0.73 l m3) of

typical fibre–fibre bonds with high (a, b) and weak (c, d) contact
areas. e Evolution of the mean bonding degree ratio rb as a

function of the fibre content / for both types of model papers.

The continuous line is the linear fit of Eq. (1) used in the

numerical and analytical models. f, g Mean coordination

number z with / for planar random (f) and orientated papers

(g), estimated with either 3D images (Marulier et al. 2015), or

the discrete element code, or the tube model Eq. (2)
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Fibre bonds

Figure 4a–d are 3D views of typical fibre bonds that

were isolated from various 3D images of fibrous

networks, as shown in Fig. 2a. These images reveal

that papers exhibited various bond morphologies with

practically full (Fig. 4a, b) or only partial (Fig. 4c, d)

fibre–fibre contact areas. We characterised these

contact areas from the acquired 3D images using the

mean bonding degree ratio rb, i.e., the mean of the

ratios between the width of the bond wb to the

considered fibre width w (see Fig. 1, Marulier et al.

2015). These measurements that were extracted from a

close examination of the 3D images with more than 80

measurements per images show that rb was noticeably

low (between 30 and 40%) and an increasing function

of the fibre content / (Fig. 4e):

rb ¼ a /� /0ð Þ; ð1Þ

with a ¼ 1:2 and /0 ¼ 0:02. By considering reason-

ably that the bonding area Sb and the projected contact

zone S are linked as Sb ¼ r2bS (see Fig. 1 and

‘‘Idealised microstructure’’ section), our results show

that the measured bonding surface ratio r2b should thus

range between 0.01 and 0.16. These values are much

lower than the value of 0.6 measured by Kappel et al.

(2009) on isolated fibre bonds extracted from a paper

the wet pressing pressure of which is unknown, but

probably higher than that used in this study. In

addition, due to both the pronounced slenderness of

fibres (r1and r3 � 10) and the investigated fibre

contents, the studied low-density papers formed

connected fibrous networks. The results plotted in

Fig. 4f–g show that the mean coordination number z

ranged between 40 and 110. Thus, despite their low

densities, these high values are likely to show that the

studied papers can be considered as fully connected

bFig. 5 a Evolutions of the elastic moduli with the fibre content

/ for planar random (black symbols) and orientated (red and

blue symbols) low-density papers. b Normalised moduli

E=E/¼0:35, ET=ET/¼0:35 and EL=EL/¼0:35 as a function of /
(the continuous line is the power-law Eq. (1)). cEvolution of the
same normalised moduli with / and comparison with the

normalised predictions given by the Cox’s model

(Ecox=Ecox/¼0:35 continuous red line), the model of Page and

Seth (EPS=EPS/¼0:35 continuous green line) and the model ofWu

and Dzenis (EWD=EWD/¼0:35 continuous blue line). The inset

shows the evolution of the RBA with / (Sampson 2004, 2008)

that was used for the model of Page and Seth
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fibrous networks with a typical length between two

adjacent bonds on a fibre of the same order of

magnitude as the mean fibre width w, i.e., as networks

far from the percolation threshold (Åström et al. 2000;

Alava and Niskanen 2006). In addition, the studied

papers can also be considered to be far the concentra-

tion threshold where at least one internal mechanisms

could arise during loading (i.e., with at least one

hypostatic fibre). This will be confirmed later with our

simulations, see ‘‘Model prediction and discussion’’

section. Combined with the experimental trend given

by Eq. (1), this observation tends to prove that bond

micro-mechanics is expected to be a central mechanism

in the elasticity of these low-density papers which

exhibit numerous bonds with small bond surfaces.

From the 3D images, we showed that the mean

coordination number z, i.e., the mean number of fibre

bonds per fibre, could be well estimated by a modified

expression (Guiraud et al. 2012) of the tube model

(Toll 1993), as illustrated in Fig. 4f–g:

z ¼ 4b/
2

p
r1u1 þ u2 þ 1

� �
; ð2Þ

where u1 and u2 are orientation functions that were

completely determined from the knowledge of the

orientation of theN fibres contained in a representative

volume of each studied paper (experimentally, more

than 1200 measurements were made purposely):

u1 ¼
1

N2

XN
k¼1

XN
l¼1

pk � plk k and u2

¼ 1

N2

XN
k¼1

XN
l¼1

pk � plj j; ð3Þ

These orientation functions arise from geometrical

arguments when considering the intersection of the fibres

havingan identical orientationvectorpwith a cylindrical

volume surrounding a test fibre with an orientation p0

(Toll 1993). The first is deduced from the volume of

the fibres p which intersect the lateral side of the

cylinder, whereas the second one comes from the

volume of fibres p which intersect the extremities of

the cylinder. They are equal to 0 and 1, 2=p and 2=p,
p=4 and 1=2, for unidirectional, planar random and 3D

random fibre orientation, respectively. In addition, the

parameter b � 2 in Eq. (3) was introduced by

Marulier et al. (2015) to account for the slightly

twisted geometry of the studied fibres (Figs. 2, 3).

Elastic properties of produced papers

and relevance of literature models

The evolutions of the Young’s moduli E;EL and ET as

a function of the fibre content / are plotted in Fig. 5a

(no relevant data was obtained for the orientated

papers with the lowest density, i.e., for / ¼ 0:05, due

the weakness of the measured tensile forces and the

capacity of the load cell of the testing machine).

Significant orthotropy is highlighted in the figure for

the orientated papers with EL � ET . In addition, it is

worth noticing from the graph depicted in Fig. 5b that

the normalised elastic moduli E=E/¼0:35, EL=EL/¼0:35

and ET=ET/¼0:35 followed the same master curve

which obviously emphasises a power-law increase of

the paper elasticity with /:

E=E/¼0:35 � EL=EL/¼0:35 � ET=ET/¼0:35 / /4:3

ð4Þ

The non-linearity is principally noticed for low

fibre contents, i.e., when 0:1	/	 0:35 and seems in-

line with that observed earlier (Rigdahl et al. 1983;

Niskanen 2011; Park et al. 2020). For example, by

analysing the experimental data of Rigdahl et al.

(1983), a power-law exponent of 3.6 was found. These

trends are not commonly observed for standard papers

with higher densities (Niskanen 2011), for which the

Young’s moduli follow more or less linear evolutions

with the fibre contents. It tends to prove that the micro-

mechanics of low-density papers may differ from that

of denser papers.

The experimental evolution of E were compared

with the predictions proposed by some analytical

models developed for fibrous materials: the models of

Cox (Cox 1952), Page and Seth (Page and Seth 1980)

and Wu and Dzenis (Wu and Dzenis 2005; Fig. 5c).

These approaches were chosen because they rely on

very different micromechanical assumptions (see

‘‘Appendix 1’’ for their analytical expressions of E):

• Cox’s model assumes that papers can be regarded

as trusses of elastic straight fibres uniquely loaded

in tension, without interaction with their neigh-

bouring fibres (Cox 1952). In this approach, E

depends on the Young’s modulus of fibres Ef and is

a linear function of the fibre content / (Eq. (A1)).

• The model of Page and Seth is an extension of

Cox’s model (Page and Seth 1980), where it is

additionally assumed that the mechanical stresses
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between fibres are transferred through the shear of

bond regions. Hence, the elastic modulus E of

papers is a non-linear function of / (Eq. A2), the

geometry, the tensile Ef and shear Gf moduli of

fibres, and of the relative bonded area (Page et al.

1962; Sampson 2004).

• Wu and Dzenis proposed a micromechanical model

for the stiffness of planar fibre networks with elastic

straight fibres of finite length that can be stretched,

bent and sheared and that are connected by rigidfibre

bonds (WuandDzenis 2005).The resultingYoung’s

modulus E is a non-linear function of / that

depends on the fibre geometry (r1; r2), the Young’s

modulus Ef and the Poisson’s ratio vf of fibres, and

on the connectivity of the fibrous networks, which

is effective above a critical number of fibres per

unit of volume nc (Eq. A(3)).

To compare the prediction of these models, we used

a fibre Young’s modulus Ef ¼ 30 GPa, which is a

good estimate for softwood pines (Neagu et al. 2006;

Mansour et al. 2019). By checking that their influence

was weak on the model prediction, Gf and mf were set
to 3 GPa and 0.3. Lastly, the critical number of fibres

per unit of volume nc was set to 5.7, following 2D

estimates of the literature (Åström et al. 2000; Alava

and Niskanen 2006). Figure 5c shows that the afore-

mentioned models do not provide relevant prediction

for the elastic modulus E of the studied papers. None

of them is able to capture the non-linear power-law

evolution of E with / observed at low fibre contents.

The models proposed by Cox and Page and Seth are

linear and nearly affine functions of the fibre content

/, respectively (even if a non-linear evolution for the

RBA with / is taken into account in the second

model). It is interesting to note that the model of Wu

and Dzenis (2005) predicts a non-linear evolution of E

with/. However, this non-linearity is not as marked as

that observed experimentally so that the model

diverges from the experimental data. Hence, results

shown in Fig. 5c suggest that the elastic behaviour of

the considered low-density papers is ruled by elemen-

tary deformation micro-mechanisms different from

those often assumed in the analytical models. In

particular, these models do not properly account for

the contribution of the numerous cohesive and

deformable fibre bonds nor for the peculiar geometry

of these bonds (Fig. 4).

A new micromechanical model focusing on fibre

bonds

In light of (1) the experimental data gathered in the

previous section and (2) the difficulty of classical

analytical micromechanical models to predict the

elastic properties of low-density papers, we herein

propose novel 3D network models for the mechanics of

paper materials, valid for the low density regime. The

models were built on several assumptions related both

to the fibrous microstructures and fibre scale deforma-

tion mechanisms of papers. The approach assumes that

the micromechanics of bonds plays a central role. We

introduced these features into an upscaling technique,

namely the homogenisation method for discrete struc-

tures, in which additional kinematic assumptions were

finally stated to obtain compact analytical estimates for

the stiffness of paper materials.

Idealised microstructure

From the analysis summarised in the previous section,

we considered several assumptions. Thus, typical

Representative Elementary Volumes (REVs) of the

studied papers were seen as thin but 3D discrete

structures with N cellulosic fibres i of centres of mass

Gi and mean orientation vectors pi. Fibres exhibited

planar fibre orientation and were considered as straight

and slender beams of length l, with flat elliptical cross

section of area pwt=4, w and t being the major and

minor axes of the ellipse base, respectively oriented

parallel and perpendicular to the midplane e1; e2ð Þ of
the paper sheets (Fig. 1). Also, we assumed that there

is a good separation of scale between the size of the

REVs, of the same order of magnitude than the fibre

length l, and the macroscopic size of the paper sheets

L, so that the scale separation parameter � is small, i.e.,

� ¼ l=L 
 1: In addition, a fibre bond between two

contacting fibres i and j is denoted b. On fibre i (resp.

j), the bond is located just in front of the centreline

point Mb
i (resp. Mb

j ) of curvilinear abscissa sbi (resp.

sbj ). The bond exhibits a contact area Sb which depends

on the mean fibre width w, mean bonding degree ratio

rb; and the relative orientation of fibres i and j. As

sketched in Fig. 1 in grey, and for the sake of

simplicity, we considered that a good estimate of Sb
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was a weighted rhomb surface of with wb ¼ rbw

defined by the projection of the contact surface of

connected fibres (i and j) onto their normal contact

plane (Le Corre et al. 2005; Guiraud et al. 2012;

Martoı̈a et al. 2016a, b):

Sb �
�w2
b

pi � pj
�� �� ¼ �r2b �w

2

pi � pj
�� �� ; ð5Þ

Idealised micromechanics

To upscale the elastic properties of the considered

fibrous networks, we assumed that fibres were slender

rigid beams linked with linear elastic bonds b (Fig. 1).

This apparently strong assumption is supported by the

experimental observations reported in the previous

section. Indeed, due to both the high connectivity of

the studied papers and the low bonding degree ratio

rb(Fig. 4), we assumed that the fibre deformation far

from the bonds could be neglected compared with the

deformation mechanisms arising inside the bond

interfaces and their close vicinity. Consequently,

when the considered fibrous networks were subjected

to a macroscopic in-plane infinitesimal displacement

gradient ru, the in-plane infinitesimal displacement

ubi of the fibre centreline point M
b
i is:

ubi ¼ ui þ sbi hie3 � pi ð6Þ

where ui and hi are the in-plane displacement ofGi and

rotation angle of the fibre i around the out-of-plane

direction e3 ¼ e1 � e2, respectively. The displace-

ments and rotations of fibres i and j induced the

deformation of the bond b, which induced an in-plane

shear reaction force fb and an out-of-plane shear

reaction moment noted mbe3 (expressed in the centre

of the bond), both being exerted by fibre j on fibre i.

We proposed simple expressions for fb and mb (Le

Corre et al. 2005):

fb ¼ kbSbDub; ð7Þ

mb ¼ kb
p
4
S2bDhb; ð8Þ

where kb is the mean specific bond stiffness (the bond

interface and its vicinity), and where Dub and Dhb are
the relative displacement and rotation between the

connected fibres i and j:

Dub ¼ uj � ui þ e3 � sbj hjpj � sbi hipi
� �

; ð9Þ

Dhb ¼ hj � hi: ð10Þ

Hence, neglecting the external volume forces and

moments, and introducing Bi the set of bonds of fibre i,

the momentum balance equations that govern the

quasi-static motion of the set N of the N fibres i

contained in a REV is the following two-dimensional

mechanical problem (Le Corre et al. 2004, 2005;

Martoı̈a et al. 2016a):

8i 2 N ;

P
Bi

fb ¼ 0

P
Bi

mbe3 ¼
P
Bi

sbi fb � pi

8<
: : ð11Þ

Theoretical upscaling

It is interesting to note the strong analogy between the

micromechanical problem presented in the previous

subsection and the one developed by Le Corre et al. to

model the rheology of highly concentrated fibre

suspensions with planar fibre orientation and Newto-

nian fibre–fibre interactions (Le Corre et al.

2004, 2005). Indeed, the elastic bond interaction

forces and moments, the infinitesimal displacement

and rotation fields of the fibres that are considered

here, could be, respectively, replaced by the Newto-

nian viscous interaction forces and moments, the

translational and rotational velocity fields of the fibres

in the suspensions that were studied by Le Corre et al.

Hence, using this analogy together with the theoretical

developments carried out in Le Corre et al. (2004) with

the discrete adaptation (Tollenaere and Caillerie 1998)

of the homogenisation method for periodic structures

with multiscale asymptotic expansions (Bensoussan

et al. 1978; Sanchez-Palencia 1980), several interest-

ing results can be mentioned. Among them, it is

possible to show that the local reaction forces fb and

moments mb keep their generic form Eqs. (7)–(8) with

the following relevant approximations:

Dub � duj � dui þru � nb þ e3 � sbj hjpj � sbi hipi
� �

;

ð12Þ

Dhb � hj � hi: ð13Þ

where dui (and duj) are the first order displacement
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fluctuations around the macroscopic displacement

field u, hi (and hj) the first order rotations of fibres

and where:

nb ¼ GiGj ¼ sbi pi � sbj pj: ð14Þ

In addition, if the separation of scale is good such as

here (� 
 1), it can be proved that the equivalent

macroscale continuum is a Cauchy medium with a

macroscale symmetric stress tensor r that takes the

following generic discrete form:

r ¼ 1

Vrev

X
B

nb � fb; ð15Þ

where Vrev is the volume of the REV and B the set of

the B bonds contained in it. By introducing

B=Vrev ¼ nz=2, the number of bonds per unit volume

and n the number of fibres per unit volume

ðn ¼ N=VrevÞ, and thanks to Eq. (5), r can be

expressed as follows:

r ¼ kbr
2
bw

2 nz

2

1

B

X
B

1

k pi � pj k
nb � Dub: ð16Þ

Finally, the homogenisation method allows proving

rigorously that r is a linear function of the macroscale

strain tensor e ¼ ðruþrutÞ=2 (Le Corre et al.

2004):

r ¼ C : e; ð17Þ

whereC is the symmetric macroscopic elastic stiffness

tensor related to fibre–fibre bonds.

Estimates of the elastic stiffness tensors

In order to estimate the stiffness tensorC, we used two

strategies, i.e., a numerical one based on discrete

element simulation and an analytical one with addi-

tional assumptions on the fibre kinematics.

Discrete element simulation

Taking advantage of the aforementioned analogy, we

used the numerical method proposed by Le Corre et al.

( 2005) and Dumont et al. (2009). The components of

the stiffness tensors C were thus calculated by (i)

generating realistic REVs, (ii) subjecting them to three

independent macroscale strains e, e.g., eI ¼ e1 � e1,

eII ¼ e2 � e2, eIII ¼ ðe1 � e2 þ e2 � e1Þ=2 and

solving the linear system Eqs. (7)–(8), (11)–(13) to

estimate the kinematic fields dui and hi related to these
elementary macroscopic strain fields, (iii) computing

the resulting macroscopic Cauchy stress tensors rwith
Eq. (16), i.e., rI ; rII ; rIII, respectively, and (iv) iden-

tifying the components of C with Eq. (17). For step

(ii), we used the discrete element solver developed in

Le Corre et al. (2005). For step (i), to generate

numerical REV’s that mimicked the fibrous

microstructures of the fabricated papers, we used a

simple deterministic technique inspired from the

statistical tube model Eq. (2). Briefly, N straight fibres

i of lenght l with elliptical cross section of area pwt=4
and with orientation vectors pi parallel to the paper

sheet midplane ðe1; e2Þwere generated inside REVs of
volume Vrev ¼ l2revtrev. The in-plane dimension lrev of

the REVs was set larger than the fibre length l to avoid

generating continuous fibres. Practically, the values of

lrev and hrev were set to 1:5l and 10t, respectively, and

we checked that above these values, results remained

unchanged. Thus, fibrous networks were generated

with various fibre contents / ¼ npwtl=4 ranging from
0:05 to 0:5, with various Gaussian-based in-plane fibre

orientation distributions, from planar random to highly

orientated along the e1 direction. Figure 3c-d show

two examples of typical idealised fibrous networks

with random or preferred fibre orientations that were

generated using this procedure. Figure 3a-b also show

that the generation procedure allowed obtaining

fibrous networks with orientation distributions close

to those measured experimentally. The connectivity of

the generated fibrous networks was assessed using a

deterministic soft-core approach: a rectangular control

volume size 2blwt centered on the centerline of each

fibre i was defined, each fibre the centreline of which

intersected the control volume was added to the

connectivity sets Bi and B. As shown in Fig. 4f-g, the

computed mean coordination number z followed the

same evolution than that predicted by the modified

statistical tube model Eq. (2), i.e., close to the

experimental data deduced from the 3D images.

Lastly, to run the simulation, it is worth noting that

cFig. 6 Evolution of EL, ET GLT , mLT and mTL with the fibre

content / for fibrous networks with a planar random fibre

orientation (a, c, e) and a moderate fibre alignment along the e1-
direction (b, d, f), similar to that reported in Fig. 2c-d. The

symbols correspond to numerical results and the lines to

polynomial fits used to emphasise trends
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the bonds of the REVs were ascribed a mean bonding

degree ratio rb which followed the affine function

Eq. (1). For a given couple of fibre orientation and

content, simulations were repeated ten times to better

estimate trends.

Analytical estimates

To build compact analytical expressions for the elastic

stiffness tensors of papers with relevant microstructure

and micromechanical parameters, additional assump-

tions were stated both on the fibrous microstructures

and on the kinematics of fibres. Their relevance was

checked using the microstructure generator and

discrete element simulations:

1. Thanks to the results plotted in Fig. 4f-g, we

assumed that the modified tube model Eq. (2) was

a proper prediction of the mean coordination

number z.

2. We also supposed that the two terms inside the

summation of Eq. (16) were weakly correlated so

that 1/kpi � pjk was extracted from the summa-

tion and approximated by its mean value. This is

equivalent to stating that the bond area Sb can be

approximated by its mean value Sb:

Sb ¼
r2bw

2

k pi � pj k
� Sb �

r2bw
2

u1

ð18Þ

3. The infinitesimal displacement field ui of the

centre of mass Gi was assumed to be an affine

function of the macroscopic displacement gradi-

entru. This assumption led to neglecting the first

right-hand term in the expression (12) of Dub, i.e.,
duj � dui � 0.

4. The rotation of the fibre i denoted e3 � hipi was
assumed to follow that subjected by the macro-

scale transformation:

e3 � hipi ¼ ru � pi � pi � pi � pi : e ð19Þ

Thus, accounting for the two previous assumptions,

Dub was rewritten as follow:

(a)

(b)

(c)

bFig. 7 Evolution of the elastic parameters EL, ET , GLT , mLT and

mTL with the major principal value aI of the second order fibre

orientation tensor A (/ ¼ 0:3). Symbols are numerical results

and lines correspond to polynomial fits used to emphasise trends
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Dub ¼ sipi � pi � pi � sjpj � pj � pj
� �

: e; ð20Þ

and after some analytical developments detailed in

‘‘Appendix 2’’, a simple and compact analytical

estimate of the stiffness tensor C was obtained:

C ¼
4bkbl/

2 2
p r1u1 þ u2 þ 1
� �

r2br2

3pu1

1� 1

4/ 2
p r1u1 þ u2 þ 1
� �

 !
A;

ð21Þ

where A is the fourth-order fibre orientation tensor

defined as (Advani and Tucker 1987):

A ¼ 1

N

XN
i¼1

pi � pi � pi � pi: ð22Þ

Equation (21) clearly emphasises the role played by

the fibre geometry (l, r1, r2), content (/) and

orientation (A, u1;u2Þ as well as the key roles played
by the bond stiffness (kb) and by the bonding degree

ratio (rbÞ on the macroscale stiffness C. It is worth

noticing that for slender fibres and highly connected

fibrous networks such as those investigated in this

study, i.e., when r1 � 1 and z � 10, Eq. (21) can be

drastically simplified to:

C ¼ 8

3p2
bkblr3r

2
b/

2A; ð23Þ

In this case, C should thus follow linear evolutions

with the fibre length l, the fibre aspect ratio r3, and the

fibre orientation tensorA. In addition, the effect of the

bonding ratio is noticeable, quadratic, and accounting

for the measured affine evolution of rb with / (Eq. 1),

C should thus, at least for the low-density papers

studied in this work, increase as a polynomial function

of degree 4 of the fibre content /.

Model prediction and discussion

Numerical results

By taking advantage of the analogy of the present

problem with that treated in Le Corre et al. (2005), we

have shown that the studied fibrous microstructures

exhibit orthotropic elasticity and have also checked

that the principal directions of anisotropy correspond

to the principal orthogonal directions of the generated

fibrous microstructures, i.e., e1 and e2. Hence, it was

possible to extract from the three elementary

macroscale strains eI ; eII ; eIII the REVs were subjected
to (and from the computation of the corresponding

macroscale stresses rI ; rII ; rIII), the expressions of the
longitudinal EL and transverse ET Young’s moduli of

the papers, as well as their in-plane shear modulusGLT

and in-plane Poisson ratios mLT and mTL, assuming an

in-plane stress state:EL¼rI11 1�mLTmTLð Þ, ET¼rII22
1�mLTmTLð Þ,GLT¼rIII12 , mLT¼rI22=r

I
11, mTL¼rII11=r

II
22.

Figure 6 shows the evolutions ofEL, ETGLT , mLT and

mTL with the fibre content / for papers with planar

random fibre orientation and with a preferred fibre

orientation (Fig. 3a, b). These predictions were

obtained using a specific shear bond stiffness kb¼
2000 N mm-3. The relevance of the value of kb will

be discussed in the ‘‘Comparison with experimental

results’’ section. From these figures, several remarks

can be drawn:

• Even for the lowest investigated fibre content, our

simulation proved that there was no internal

mechanism within the studied fibrous structures,

i.e., the generated REVs contained no hypostatic

fibre. Instead, the mean coordination number z was

numerically found to be close to 10 for the lowest

concentration. This reinforces our experimental

observations: the considered low-density papers

are fully connected fibrous networks, far from the

percolation threshold of these systems.

• For a fibre content / greater than 0.1, Fig. 6 shows

that the scattering of the numerical results (marks)

around the mean fitted values (lines) was rather

weak and mainly ascribed to the generation

procedure: fibres had random positions in the

REV’s and the resulting fibre orientation distribu-

tions were not exactly the same every time.

• Papers with 2D planar random fibre orientation

exhibited in-plane isotropy, i.e., E ¼ EL ¼ ET ,

m ¼ mLT ¼ mTL andG ¼ GLT ¼ EL=2 1þ mLTð Þ. It is
interesting to notice that the associated Poisson

ratio m was more or less constant and did not

depend on the fibre content. For the considered 2D

planar random fibre orientation, m was close to a

mean value of � 0:33. This value is similar to that

reported in the literature for analytical or numerical

discrete models, even if the adopted microme-

chanics differs from that considered in those

studies (Cox 1952; Heyden 2000; Heyden and

Gustafsson 1998; Wu and Dzenis 2005). For

example, the analytical model proposed by Cox
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(1952) revealed that fibre networks with planar

random fibre orientation exhibited a Poisson ratio

of m ¼ 1=3: In addition, Heyden and Gustafsson

(Heyden and Gustafsson 1998) also found similar

results using discrete element simulation for the

prediction of the properties of 2D networks

consisting of short fibres exhibiting finite tensile

and bending elastic stiffnesses and elastic bonds.

• A pronounced orthotropy was observed for the

fibre networks with a preferred fibre orientation

along the e1-direction, i.e., EL � 3ET with

ET\E\EL and mTL � 3mLT with mTL\m\mLT .

To better highlight the effect of fibre orientation,

Fig. 7 shows the evolutions of EL, ET ,GLT , mLT and mTL
(with / ¼ 0:3) as a function of the major principal

value aI of the second order fibre orientation tensor A

(for a planar random network aI ¼ 0:5, whereas for

fully aligned fibres aI ¼ 1). A significant increase

(resp. decrease) of EL (resp. ET ) with the increase of aI
was observed (Fig. 7a), whereas the shear modulus

GLT slightly decreased (Fig. 7b). In contrast, the

Poisson ratios followed opposite evolutions: mTL
significantly increased from 0.33 up to values larger

than 1 with increasing aI . The Poisson ratio mLT
decreased progressively from 0.33 up to 0 as the fibre

orientation intensity aI increased (Fig. 7c). Similar

tendencies were observed by Heyden and Gustafsson

for fibrous networks with comparable fibre orientation

distribution functions (Heyden 2000; Heyden and

Gustafsson 1998).

Comparison between discrete element simulation

and the analytical model

Figure 8 reveals that the analytical expressions

Eqs. (21) and (23) fit well the trends gained from the

discrete element simulation when the same

microstructure and micromechanical parameters are

used as input. Hence, the analytical estimates can be

considered as accurate enough predictors of the in-

plane elasticity of low-density papers. In particular,

this figure shows the relevance of the very simple and

compact form Eq. (23) proposed for slender and

highly connected fibrous networks.

Comparison with experimental results

Thanks to the measurements performed with 3D

tomographic images (see ‘‘Experimental results and

discussion’’ section), all input and microscale param-

eters of the models could be obtained except the

specific shear bond stiffness kb. This unique unknown

parameter was determined to fit the experimental

results obtained from tensile tests:

kb ¼ 2000 Nmm�3. This is illustrated in Fig. 9, from

which several important remarks can be drawn:

• The proposed analytical predictor Eq. (23) allows

nice quantitative predictions of the measured

Young’s moduli E;EL;ET , for a wide range of

fibre contents, i.e., up to 0.35, and for two different

fibre orientation distributions. In particular, the

orthotropy was well-captured for the orientated

papers, as well as the non-linearity of the Young’s

moduli with the fibre content /. According to the

assumptions stated to build the model, the last

trend may be ascribed to three important

microstructure parameters, as emphasised from

Eq. (16): (i) the number of fibres per unit of

volume n ¼ 4/=ðwtlÞ which is proportional to /,
(ii) the mean coordination number z which is also

proportional to / (Eq. (2)), and (iii) the square of

the mean bonding ratio r2b where rb is an affine

function of / (Eq. (1)), for the studied low-density

papers. Hence, these predictions tend to prove, at

least within this concentration regime, that the

number, the geometry as well as the stiffness of

fibre bond zones should play a leading role on the

elasticity of papers.

• A departure of the model prediction from the

experimental data is observed above a fibre content

of 0.35, the model overestimating the last ones. For

example, at a fibre content of 0.45, the tensile

modulus of planar random papers is close to 5.5

GPa, whereas the model prediction is close to 6.5

GPa. Further increasing the paper density above

cFig. 8 Comparison between the discrete element simulations

and the proposed analytical models for networks with a planar

random fibre orientation (a, c, e) and a preferred moderate fibre

alignment along the e1-direction (b, d, f), similar to that reported

in Fig. 2c, d. For the sake of clarity, only polynomial fits of the

numerical results are shown in these figures
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this concentration would definitely conduct to

unrealistic stiff estimations. The first reason to

explain this departure is related to the relevance of

Eq. (1) at concentration higher than those studied

herein: the bonding ratio should probably deviate

from the reported linear increase to reach a yield:

additional bond scale experimental data would

reinforce this possible assumption. The second

important reason may be correlated to the increase

of the fibre deformation mechanisms far from

bonding zones such as tension, compression and

shear. This has been highlighted by the numerical

simulation of Brandberg and Kulachenko (2017)

for high-density papers with increasing bond

stiffnesses: compared with low-density papers

with low bond stiffnesses (such as the papers

studied here), the aforementioned mechanisms are

expected to take the leading role (up to 80% of the

total elastic energy). Under such circumstances,

the evolution of the elastic moduli with the fibre

content should become linear, as already predicted

by the previous analytical literature models (see

Fig. 5): the proposed model should be improved

and modified purposely.

• The relevance of the specific shear bond stiffness

value was first investigated in regards of the energy

per unit surface area eb which is required to break

fibre bonds. By assuming as a first rough but

rational approximation that the early stages of

plastic deformation in papers, i.e., typically at a

macroscopic tensile yield strain eY that ranges

between 0:2 and 0:5%, mainly arise from the

elastic decohesion of fibre bonds, it is possible to

get an estimate of eb from the proposed network

approach:

eb �
1

2
kbDu

2; ð24Þ

where Du is the mean relative displacement in the

bond regions between bonded fibres (Martoı̈a et al.

2016a). The displacement Du can be estimated with

Eq. (20), i.e., Du � eY l=4, so that Eq. (24) should

conduct to fibre bond breakage energy eb that should
range between 2.5 10–15 and 6.25 10–15 kJ lm-2

(using the estimated value of kb). It must be empha-

sized that this estimate depends on the area of the bond

surface. By performing micromechanical tests on

bonded cellulose fibres, several authors showed that eb
should range between 10–16 and 10–15 kJ lm-2 (Sch-

mied et al. 2012, 2013; Hirn and Schennach 2015).

Considering the uncertainty of our own estimate of the

Fig. 9 Evolution of the Young’s moduli E;EL;ET with the fibre

content/ for papers with planar random fibre orientation (a) and
a preferred fibre orientation along the e1-direction (b) similar to

that reported in Fig. 2c, d: comparison between the predictions

of the analytical model Eq. (23) (lines) and the data obtained

from tensile tests (symbols). These predictions were obtained

using a specific shear bond stiffness kb of 2000 Nmm�3
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bond surface area, this practically falls into the

aforementioned range. Thus, it can be considered that

the estimate of the specific bond stiffness kb is

relevant.

• It is also worth noting that the value of the specific

shear bond stiffness kb is close to that used in the

3D fibre network simulations performed by Hey-

den and Gustafsson for cellulosic fibrous materials

(Heyden and Gustafsson 1998; Heyden 2000), i.e.,

kb ¼ 3000 Nmm�3. In addition, the value of kb is

rather close, albeit approximately ten times

weaker, to the lowest value considered in the fibre

network simulation of Brandberg and Kulachenko

(2017). In this numerical work, the tangent bond

stiffness Kb ¼ kbr
2
bw

2 used for network simulation

was deduced from a former numerical study

achieved at the bond scale. Fibres with ‘‘perfect’’

geometry were used for that purpose, i.e., very

different from the complex ones shown in Fig. 3.

Thus, these numerical values should be overvalued

due to a possible overestimation of the bonding

degree ratio rb, compared with those that were

measured from the 3D images with real fibres that

are wavy and twisted. However, it is interesting to

note that the overall bond energy should be the

leading deformation mechanism, i.e., with more

than 40% of the overall deformation energy, when

the lowest value of Kb proposed by Brandberg and

Kulachenko (2017) is used and when low-density

papers are considered. If we extrapolate the results

of Brandberg and Kulachenko (2017) to a bond

energy ten times lower, i.e., in accordance to our

value which is in-line with the experimental results

of the literature (see previous point), such a bond

contribution is expected to raise up to more than

80%. This reinforces the basic micro-mechanical

assumption of the proposed model.

Conclusion

The objective of this study was to link the macroscale

elastic properties of low-density paper materials with

their complex fibrous microstructures and the related

fibre scale deformation mechanisms. For that purpose,

model papers with simple planar random and orien-

tated fibrous microstructures were fabricated. Tensile

tests showed that their elastic moduli exhibited well-

known planar orthotropy that depended on the fibre

orientation. In addition, regardless of the considered

fibre orientation, the Young’s moduli of papers

increased as a power-law function of the fibre content

/ with a power-law exponent close to 4, which is a

trend not observed for papers with higher densities.

From the fibre scale 3D images of their microstruc-

tures, we also showed that the connectivity of the

studied low-density papers was high, i.e., the distance

between two adjacent bonds on a fibre was found to be

of the same order of magnitude as the fibre width. The

fibre connectivity is a function of the geometry,

content and orientation of fibres. In addition, a

modified expression of the statistical tube model was

shown to reasonably predict the fibre connectivity.

The 3D images also demonstrated that the mean

bonding degree ratio increased linearly with the fibre

content but with noticeable low values, i.e., with

bonding surface areas much lower than that available

for a full fibre coverage (only 1 to 25% of the latter).

From these experimental data obtained at the fibre

scale, fibre network models were proposed to predict

the in-plane elastic properties of the considered low-

density papers. In these models, fibres were regarded

as rigid rods so that the elastic deformation of papers

was mainly attributed to the deformation of the fibre

bonds and their vicinities. Hence, two macroscale

models were established. The first one used fibre scale

discrete element simulations and the second was

analytical. The latter can be easily used for engineer-

ing purposes, e.g., to design novel paper-based

applications or to optimise some of the papermaking

operations. Both models emphasised the leading roles

of the fibre content, orientation and geometry on the

macroscale elastic properties of the considered papers.

Despite its simplicity, the analytical model quantita-

tively well described trends predicted by the numerical

model. If relevant microstructure descriptors are

provided as inputs, we have also shown that the

prediction of the numerical and analytical models can

nicely estimate the elastic properties of the planar

random and orientated model low-density papers, for a

wide range of fibre contents and with only one

unknown parameter, namely, the specific shear bond

stiffness. The identified value of the specific shear

bond stiffness is in accordance with literature data.

Hence, the micromechanical approach developed in

this study proves that the fibres bonds, i.e., their
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number, their geometry as well as their stiffness, play a

leading role on the elasticity of low-density papers. At

higher fibre contents, other leading deformation

micro-mechanisms arise, such as tension and shear

far from bonding zones, thus inducing a switch from

the non-linear dependence of the Young moduli with

the fibre content to a linear one. The developed model

should be modified accordingly for this fibre content

range.
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Appendix 1

In the theory developed by Cox, the Young’s modulus

ECox of planar random fibre networks is:

ECox ¼
1

3
Ef/; ðA1Þ

where Ef is the Young’s modulus of the fibres.

In the approach developed by Page and Seth, the

Young’s modulus EPS of planar random fibre networks

is:

EPS ¼
1

3
Ef/ 1� 1

r1RBA

ffiffiffiffiffiffiffiffi
Ef

2Gf

s" #
; ðA2Þ

whereGf is the shear modulus of fibres, r1 ¼ l=w is the

fibre slenderness and RBA is the relative bonded area

that can be measured using various experimental

techniques or estimated analytically using the Samp-

son’s model as follows:

RBA � 1� 1

c


 �
1þ 1� /ð Þ ð2� 2þ /ð Þ 1� /ð Þð Þ

ln 1� /ð Þ


 �
;

ðA3Þ

where c ¼ wG=d and d ¼ 1:5� 10�4 g m-1.

In the 2D network model proposed by Wu and

Dzenis, the effective Young’s modulus EWD and the

Poisson ratio mWD of planar random fibre network are

written as a function of the dimensionless fibre density

q (for cylindrical fibres of mean diameter w, n ¼
4/r1=p is the number of fibre per unit of volume) as

follows:

EWD ¼
pEf 1� m2WD

� �
2r1

n

(
3

16
þ 2

"
n2

 
1

p
þ
1þ 2

p

2r1

!2

� 1

4

#

 
a

1þ mf
þ b

!)
1� exp

1� n=nc
2

!#
;

 "

ðA4Þ

and

mWD ¼
p2 � 32 n2 1

p þ 1þ 2
p

� �
1
r1

h i
� 1

4

n o
a

1þmf
þ b

h i

3p2 þ 32 n2 1
p þ 1þ 2

p

� �
1
r1

h i
� 1

4

n o
a

1þmf
þ b

h i ;
ðA5Þ

where mf is the Poisson ratio of the fibres, nc is a

percolation threshold beyond which fibres form fully

connected planar networks without disjointed sub-

structures (for planar networks with random orienta-

tions, some numerical studies showed that nc � 5:7

(Åström et al. 2000; Alava and Niskanen 2006)), and a

and b are dimensionless numbers that are expressed as

a function of both the coordination number z and a

critical fibre segment length lc � w=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ mf Þ

p
as

follows:
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a ¼ 1

4 zþ 1ð Þ2
Zl zþ1ð Þ

lc

0

g exp �gð Þdg; ðA6Þ

and

b ¼ 3w2

8l2

Zzþ1

l zþ1ð Þ
lc

exp �gð Þ
g

dg: ðA7Þ

Appendix 2

Accounting for all the assumptions stated in ‘‘Theo-

retical upscaling’’ section, the macroscale stress tensor

r Eq. (11) can be expressed as follows:

r ¼ kbzb
2
d2maxn

2u1

B1 þ B2ð Þ : e; ðA8Þ

where

B1 ¼
1

B

X
N

X
B

sb
2

i pi � pi � pi � pi

B2 ¼ � 1

B

X
N

X
B

sbi s
b
j pj � pi � pi � pi

8>>><
>>>:

; ðA9Þ

By assuming that fibre bonds are uniformly

distributed along the fibre length, the following

discrete sums can be written (Vassal et al. 2008):

P
B
sb2i � z

l2

12
1� 1

z

� �
P
B
sbi � 0

8><
>: : ðA10Þ

Then, by assuming that si and sj are uncorrelated,

the expressions of B1 and B2 are

B1 �
l2

6
1� 1

z

� �
A

B2 � 0

8<
: ; ðA11Þ

where A is the fourth-order rod orientation tensor

defined in Eq. (22). These two relations were vali-

dated using the microstructure generator and yielded

to the analytical estimates proposed in Eqs. (21) and

(23).
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Martoı̈a F, Dumont PJJ, Orgéas L et al (2016b) Micro-me-

chanics of electrostatically stabilized suspensions of cel-

lulose nanofibrils under steady state shear flow. Soft Matter

12:1721–1735. https://doi.org/10.1039/C5SM02310F
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