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Reversible dilatancy in entangled single-
wire materials
David Rodney1,2*, Benjamin Gadot2,3, Oriol Riu Martinez3, Sabine Rolland du Roscoat3

and Laurent Orgéas3

Designing structures that dilate rapidly in both tension and compression would benefit devices such as smart filters, actuators
or fasteners. This property however requires an unusual Poisson ratio, or Poisson function at finite strains, which has to vary
with applied strain and exceed the familiar bounds: less than 0 in tension and above 1/2 in compression. Here, by combining
mechanical tests and discrete element simulations, we show that a simple three-dimensional architected material, made of a
self-entangled single long coiled wire, behaves in between discrete and continuummedia, with a large and reversible dilatancy
in both tension and compression. This unusual behaviour arises from an interplay between the elongation of the coiled wire
and rearrangements due to steric e�ects, which, unlike in traditional discrete media, are hysteretically reversible when the
architecture is made of an elastic fibre.

Entangled fibrous materials are ubiquitous in nature and
technology and include for instance biopolymer networks1,
organic and inorganic wools2,3, carbon nanotube networks4

and fibrous scaffolds5. They represent a class of emerging materials
referred to as architectured6 or architected7 because their mechani-
cal properties after scaling strongly depend on the geometry of their
internal structure.

The stress–strain response of fibrous materials has been widely
studied, and is often characterized by a pronounced strain stiffening
in compressionwith a large hysteresis on decompression2,5,8,9. A less-
explored property is their volume variation under deformation. This
property may be quantified by Poisson’s ratio, or in the case of finite
strains, Poisson’s function10, defined during a uniaxial test as the
negative ratio of the incremental lateral to axial strains. In the case
of transversely isotropic materials, we have ν=−(dL/L)/(dH/H)
(see Fig. 1 for notation) and the corresponding volumetric strain is
dV/V =(1−2ν)dH/H .

Most common materials have Poisson’s ratios between 0 and 1/2
(refs 11,12), although we know a number of auxetic materials with
negative Poisson’s ratios13,14. In uniaxial tension, auxetic materials
counterintuitively expand laterally and thus dilate more rapidly
than common materials. Fibrous examples include sintered fibre
networks4,15–17 and spiral wire structures18. Much more rare are
materials with a Poisson ratio above 1/2 (refs 19–22). They are
called stretch densifiers19 because they shrink laterally in tension
so rapidly that their volume decreases, but they could equally be
called compressive dilatant because they expand laterally so rapidly
in compression that their volume increases. So far, in the absence
of internal transformation such as protein unfolding12,23, only
carbon nanotube yarns24 and aerogel sheets25 have been reported as
stretch densifiers.

At finite strains, an increase in volume during compression is the
well-known dilatancy26–28, characteristic of plastic flow in granular
and other discrete systems29, where steric-induced plastic events
create a free volume that decreases the network compacity. In
these cases however, dilatancy is irreversible. Its strength has been

characterized by a parameter that is, which is just twice the Poisson
function defined above, and was found in sands between 1 and 2
(refs 30,31).

Here, using a combination of mechanical tests, image analysis
and discrete element simulations, we explore the Poisson function
of entangled materials made of a single long fibre entangled with
itself32,33. These single-wire materials have a simple, yet highly
adaptable architecture in-between discrete and continuous media,
resulting in the unexpected property of being both compressive
dilatant and tensile auxetic with a Poisson function varying
continuously from below 0 in tension to above 1 in compression.
Also, when an elastic wire is used, the deformations are recoverable
on unloading. Analysing the main deformation modes in the
entanglements, these properties are explained by the combined
effects of: elongation of the coiled fibre allowed by its finite
equilibrium curvature; and steric effects, which limit or enhance
local rotations of the coiled segments.

Entangled single-wire materials were processed using a series of
thermomechanical treatments adapted from ref. 32. In summary, an
initial straight wire is first shaped into a helix and then entangled
with itself in a loose disordered ball, which is compressed into a
cylinder (see Methods, ref. 34 and Supplementary Section I for
details). The compression temperature is chosen high enough to
set the shape of the sample and relax internal stresses but low
enough to avoid sintering. Examples are shown in Fig. 1a,b. The
numerical cut in the X-ray tomographic image in Fig. 1b illustrates
the disordered entanglement of the coiled wire. This structure has
an open-cell architecture similar to a foam and is highly ductile with
high damping capabilities32–35.

To separate the role of the architecture from the wire properties,
we processed wires made from either a viscoelastic polymer
(polyamide, PA), a superelastic shape-memory alloy (nickel–
titanium, NiTi) or an elastoplastic metal (copper, Cu) (see Fig. 1a
for an illustration). Using image analysis during uniaxial tension
and compression cycles, we determined the evolution of the applied
axial strain and of the lateral and volumetric strains in a gauge region
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Figure 1 | Experimental mechanical curves. a, Examples of samples made of Cu (left), NiTi (centre) and polyamide (right) wires. The NiTi sample has its
ends impregnated in a thermoset resin to serve as clamps during tensile tests. b, X-ray tomographic image of a NiTi sample with a numerical cut to
illustrate the internal homogeneity of the structure. As transerve isotropy is preserved throughout the deformations, a single lateral dimension, L, is used.
Initial dimensions of the sample are L0=20 mm and H0=35 mm. c, Axial stress scaled by the wire’s Young modulus as a function of applied axial strain,
εH= ln(H/H0), during uniaxial compression and tension cycles of samples with 35% relative density and processed from nickel–titanium (NiTi), polyamide
(PA) and copper (Cu) wires. d, Lateral strain, εL= ln(L/L0), obtained from image analysis during the deformation cycles. e, Volumetric strain,
εV= ln(V/V0)=2εL+εH. f, Poisson’s function, ν=−(dL/L)/(dH/H)=−dεL/dεH. For the sake of clarity, Poisson’s functions are shown only during loading
phases, both in compression and tension. Dashed lines at 0 and 0.5 show the boundaries of usual Poisson’s ratios.

away from the sample extremities to avoid edge effects (seeMethods
and ref. 34 for details). For all three wires, the nominal axial stress
scaled by the wire’s Young modulus is shown in Fig. 1c, along with
the lateral and volumetric strains in Fig. 1d,e. In compression, the
visco- and superelastic (PA and NiTi) wire entanglements show
similar mechanical responses, with hysteretic stress–strain cycles
and negligible residual axial strain after unloading, even for applied
strains beyond 20% (see Supplementary Movie 1). The reason is
that in the absence of permanent bonds at contact points, the
wire, which deforms mainly elastically when made of PA and
NiTi, can largely rearrange on deformation, therefore avoiding high
localized plastic strains. Moreover, owing to the internal cohesion
along the single fibre, this architecture has a noticeable mechanical
response in tension compared with cohesion-less discrete systems,
although tensile stresses are about an order of magnitude lower
than compressive stresses (Fig. 1c). With the elastoplastic copper
wire, because of the high ductility of this metal beyond its yield
stress, scaled stresses are lower and there are large residual strains
on unloading.

Considering the compression cycles, we see in Fig. 1d that lateral
strains are positive, meaning that the samples expand laterally, as
expected for commonmaterials.More interesting are the volumetric
strains in Fig. 1e, which should be negative under compression,
but are instead positive and increase substantially during each
cycle, apart from short initial consolidating transients. This volume
increase is the signature of compressive dilatancy, which extends
up to the maximum compressive strains considered here. Moreover,
we see in Fig. 1e that most of the dilatancy is recovered on
decompression of the PA and NiTi wire entanglements, with a
maximum volume increase after unloading of 5%. The ductility of

the Cuwire does not limit dilatancy during compression but induces
large irreversible lateral and volumetric strains on decompression, as
seen in Fig. 1e.

The reversible dilatancy seenwith the PA andNiTi wires is highly
atypical and results from the unique mixed discrete–continuous
architecture of the entanglements (see Supplementary Section II for
a comparison with a glass model). On the one hand, single-wire
systems aremade of a discrete fibre, which undergoes steric-induced
rearrangements lowering the density like in typical discrete systems.
On the other hand, the continuity along the single wire ensures,
with a visco- or a superelastic wire, the development of sufficient
elastic back stress in the wire to pull the structure back towards its
initial configuration on unloading, thus allowing for a remarkable
recoverable deformation.

In tension, we would expect negative lateral strains as in other
usual materials, but instead, we see in Fig. 1d that they are very close
to zero with the PA and NiTi wires and even positive with the Cu
wire. Thus, the entanglements do not shrink laterally in tension and
expand in the case of theCuwire. As a consequence, they dilatemore
rapidly than common materials and are even auxetic with the Cu
wire. On decompression, the strains are againmostly recovered with
the PA and NiTi wires, with negligible hysteresis compared with the
compressions, whereas large residual strains are observed with the
Cu wire due to its plasticity.

Entangled single-wire materials therefore dilate rapidly in both
compression and tension, irrespective of the nature of the wire. The
volume variations can be represented by Poisson’s function shown
in Fig. 1f. Poisson’s function is strongly asymmetrical and strain-
dependent: close to 0.1–0.2 near zero strain, Poisson’s function
increases in compression to exceed 1 (followed by a slight decrease
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Figure 2 | Numerical mechanical curves on a cylindrical sample. a, Initial equilibrium configuration (visualized with Atomeye48), made of a single coiled
fibre, discretized in 10,000 linear segments (green cylinders) separated by nodes (orange spheres). b–e, The same plots as in Fig. 1. In e, the loading curve
is shown in black and some unloading curves appear as dashed coloured lines.

down to about 0.75 with the Cu wire), and decreases slowly in
tension to become zero with the PA and NiTi wires, and slightly
negative (∼−0.05) with the Cu wire. A Poisson function above
1/2 in compression is permitted elastically because the structure,
which is isotropic at rest, becomes transversely isotropic under
deformation (see Supplementary Section III for an in situ X-ray
microtomographic study of the evolution under compression of the
segment and contact orientation tensors).

To analyse more precisely the deformation mechanisms in the
entanglements, and further isolate the role of the architecture,
we performed discrete element simulations using a simple linear
elastic constitutive law for the wire based on a discrete formulation
of Kirchhoff’s beam theory36,37, with normal contact interactions38
and no tangential friction. We produced numerical analogues
of the experimental samples, reproducing the porosity, wire
equilibrium curvature and sample dimensions (Fig. 2a). We
controlled the altitude of the nodes near the top and bottom of the
samples and simulated quasistatic uniaxial tension and compression
cycles by applying strain increments in the vertical direction
followed by energyminimizations (seeMethods and Supplementary
Section IV for details on the simulations and construction of the
initial configuration).

The simulations shown in Fig. 2 reproduce the main features
of the experiments of Fig. 1. Structurally, the evolution of the
segment and contact orientations is similar to the experiments (see
Supplementary Section III). The asymmetry between tension and
compression is well predicted with comparable scaled stress levels
(Fig. 2b). The hysteresis is smaller than experimentally, at least partly
because of the absence of friction at self-contacts in the simulations.
Reversible compressive dilatancy is also a straightforward outcome
of the simulations, as seen in Fig. 2d. Slightly positive lateral
strains are also predicted in tension (Fig. 2c). Finally, the resulting
Poisson function in Fig. 2e shows a nonlinear behaviour close to
the experiments: close to 0.05 at zero strain, Poisson’s function
increases rapidly in compression up to about 1 and decreases

slowly in tension to become negative (∼−0.1 on average). The
more negative Poisson function predicted in the simulations is
probably due to the better entanglement obtained in the numerical
samples, which is central to the variations of Poisson’s function, as
discussed below.

To ensure that the large tensile and compressive dilatan-
cies are not artefacts of the finite size of the samples, we also
performed simulations using periodic simulation cells that con-
tain a single coiled wire, entangled with itself and coming in and
out through the periodic boundary conditions (Fig. 3a). To sim-
ulate uniaxial tensions and compressions, one dimension of the
cell was varied incrementally while the two other dimensions were
adapted to maintain zero lateral tensile stresses (see Methods and
Supplementary Section IV for details).

We recover again the tension–compression asymmetry (Fig. 3b)
and large lateral and volumetric strain variations (Fig. 3c,d). It
is also worth noting that successive cycles of deformation show
discrete memory39,40, with smaller cycles embedded in larger ones
and the stresses and strains retracing previous cycles with fidelity
(see Supplementary Section V). Discrete memory was also observed
with the finite-size samples. This indicates the probable existence of
Preisach-type bi-stable local configurations41 in the entanglements,
as in systems with internal transformations12,23. Also, with periodic
boundary conditions, the variations of Poisson’s function are larger
and occur over a much narrower range of applied strains than
with the finite-size samples (Fig. 3e): within ±2% of axial strain,
Poisson’s function increases above 1 in compression and decreases
down to −0.25 in tension. Dilatancy in compression is therefore
again confirmed and in tension, auxeticity is clearly marked. The
reason is that periodic conditions allow for a more homogeneous
wire entanglement without edge effects.

To further analyse Poisson’s function variations, we performed
two idealized simulations with periodic boundary conditions.
First, we generated a sample with an equilibrium curvature 10
times smaller than the reference configuration. The corresponding
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Figure 3 | Numerical mechanical curves on a periodic sample. a, Initial equilibrium configuration, made of a single coiled fibre, coming in and out of the
simulation cell through the three-dimensional periodic boundary conditions. b–e, The same plots as in Figs 1 and 2. In e, also shown are the Poisson
functions obtained during unloading (grey curves), on a configuration with a fibre equilibrium curvature 10 times smaller than the reference configuration
(green curve) and when contacts between fibre segments are not accounted for (orange curve).

Poisson function, shown in green in Fig. 3e, varies only between
0.25 in tension and 0.5 in compression, that is, the network is now
incompressible in compression and no longer auxetic in tension. In
the second test, we started from the reference sample but did not
account for fibre contacts, so that the fibre segments could cross
each other freely. As shown in Fig. 3e (orange curves), tensions and
compressions are then symmetrical and Poisson’s function remains
between 0 and 0.5.

Compressive dilatancy and tensile auxeticity require a finite equi-
librium curvature and contacts between fibres. The reason is that
both features are directly connected to the twomainmodes of defor-
mation in the entanglements, namely the extension/compression of
the wire coils and their rotation around contact points. To show this,
we computed the axis vector of each elementary coil, defined as the
end-to-end vector between nodes separated by one helical turn (see
the inset in Fig. 4a).Wemeasured during the simulations the change
of average length (〈`〉) and azimuthal angle (〈φ〉) of this vector. We
see in Fig. 4a that the average coil extension as measured by the axis
vector length varies muchmore rapidly in the reference architecture
(black and orange curves) than when the equilibrium curvature is
small (green curve). The reason is that coiled fibres can extend or
contract like a spring, whereas straight fibres are inextensible.

In Fig. 4b, we show that the azimuthal angle increases in
compression and decreases in tension because the coiled segments
rotate perpendicularly (respectively, parallel) to the loading axis in
compression (respectively, tension). In compression, the rotation
is fastest in the reference architecture, reflecting that the creation
of contacts in compression promotes fibre rotation, much like in a
mikado game. This explains qualitatively the compressive dilatancy,
which is known from the wine-rack model19,42 to arise from fibre
rotation, as illustrated on the right side of Fig. 4. In tension, fibre
rotation is slowest when contacts are included, which also explains
qualitatively the tensile auxeticity. Indeed, although auxeticity is
mainly known to result from the unfolding of re-entrant structures,

it may also arise in the case of limited rotation of stretchable
fibres4,42–44, as illustrated on the right side of Fig. 4.

The variations of 〈`〉 and 〈φ〉 shown in Fig. 4 are difficult to
predict with a simple mechanistic model because they depend on
complex steric interactions difficult to represent without ad hoc
parameters. In particular, it is difficult to account for the different
nature of the contacts created in compression and tension. Contacts
formed in compression are preferentially oriented vertically and
contribute directly to the axial stress, whereas in tension, the
contacts are mostly lateral (see Supplementary Section III). They
resist a lateral collapse of the structure, but do not contribute
directly to the axial stress, which explains the strong asymmetry
between tension and compression when contacts are accounted
for. However, even if we cannot simply predict the variations of
〈`〉 and 〈φ〉, using only our measurement of their variations to
constraint the kinematics of an 8-chain model45 (see Fig. 4c and
Supplementary Section VI) suffices to predict realistic Poisson’s
functions: as shown in Fig. 4d, we recover: the strong strain
dependence of Poisson’s function with the reference architecture; an
almost constant Poisson function when the wire curvature is small;
and a symmetrical Poisson function, starting at 0 and increasing
with strain when contacts are not included. The model is not fully
quantitative, as might be expected given its extreme simplicity, but
it confirms that: compressive dilatancy arises from the combination
of sterically induced fibre rotation and coil extension; and tensile
auxeticity arises from the extension of stretchable coiled segments
with limited rotation.

Finally, we studied the influence of the entanglement relative
density and found on periodic samples with a fixed equilibrium
curvature that below a critical relative density on the order of 33%,
the entanglement is no longer sufficient to induce dilatancies (see
Supplementary Section VII). We also expect compressive dilatancy
to disappear at high relative densities because the very large number
of initial contacts will not allow the fibre segments to rearrange
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√
2 and Poisson’s function is

recomputed from ν=−(dL/L)/(dH/H) (see Supplementary Section VI for more details).

under deformation. As large curvatures also increase the number
of initial contacts, unusual Poisson’s functions are expected in a
range of both intermediate densities and equilibrium curvatures. A
more quantitative study is however left for a future publication. Also,
we performed preliminary calculations including friction at contact
points and observed that friction limits wire rearrangements and
decreases compressive dilatancy (see Supplementary Section VIII).

To conclude, we have shown that entangled single-wire materials
show a unique strain-dependent Poisson function, reflecting
reversible dilatancy in both compression and tension. Poisson’s
functions above 1 in compression place this architecture among the
most dilatant known discrete media30,31. This work opens the way
to the design of adaptive architectures with varying porosity that
could serve as strain-actuated filters, stress sensors, and fasteners,
active under both tension and compression. Traditional auxetic
materials for instance can be used in anchoring devices, but only
in tension where they dilate, and not in compression where they
shrink laterally rapidly. The same unidirectionality applies to stretch
densifiers with the sign of the applied load reversed. Moreover,
owing to the creation of new contacts on deformation, the present
architecture does not suffer from softening, even if its relative
density decreases. Several parameters can be optimized, such as
the relative density and friction as mentioned above, but also at a
given relative density, the fibre diameter and shape of the initial
helix because, for instance, slanting is known to induce tensile
auxeticity46. Finally, the architecture being fairly straightforward to
construct, one may consider building it at different scales and in
particular at the nanoscale to be used in nanodevices, for instance
by entangling a carbon nanocoil47.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experiments. Single-wire materials were processed from wires made of
commercial polyamide (PA) used for fishing lines (25wt% PA6+ 75wt% CoPA with
15% of PA66 sequences and 85% of PA6 sequences, commercialized by Caperlan),
copper (Cu) used for electric wires and biomedical-grade nickel–titanium (Ni-50.8
at%Ti, commercialized by Fort Wayne Metals), with Young’s moduli of 1.5, 126 and
60GPa, respectively. All wires had the same diameter, 0.5mm, and a length close to
20m to yield an initial relative density of 35%. The processing route32,34 (see ref. 34
and Supplementary Section I for more details) consists of: shaping the initial
straight wire into a coil by rolling it around a threaded rod with a 3mm diameter
and a pitch close to the wire diameter, followed by a heat treatment at a
temperature T1; entangling the coil around a 3-mm-diameter rod to form a loose
fibrous ball with disordered fibre placement and orientation; and compacting the
ball in a cylindrical steel close die (diameter 20mm), mounted on a mechanical
testing machine (MTS DY34) equipped with a furnace to control the temperature
at T2. For the PA and NiTi wires, heat treatments were necessary to set the final
shape and avoid internal stresses, whereas no heat treatment was needed with Cu
because of its high ductility. For the PA wire, we used T1=T2=160 ◦C for 15min
and 60min, respectively. For the NiTi wire, both heat treatments lasted 2min at
T1=T2=350 ◦C. This temperature was adjusted to optimize the superelastic
properties of the wire at room temperature. The sample dimensions are L0=20mm
in diameter, and H0∼35mm in height for the compression samples, and∼45mm
for the tension samples. For those samples, an extra height of∼5mm was also
added to impregnate the sample extremities in a thermoset polyester resin to serve
as clamps (an illustration is shown in Fig. 1a,b). For each material, we produced a
dozen samples, keeping the same helical geometry but changing the initial wire
length to vary the final relative density. We present here only results at a relative
density of 35%, which is the relative density mostly studied.

Uniaxial compression and tension cycles were performed at room temperature,
with a strain rate of 4×10−4 s−1, inside a mechanical testing machine (MTS DY26).
The applied force F was recorded to compute the nominal axial stress 4F/πL2

0. To
avoid edge effects, strains were measured inside a gauge zone away from the sample
extremities34. Images of the samples were acquired during deformation using a
CCD (charge-coupled device) camera (Jai Pulnix RM-4200GE). Light reflections
on wire segments on the external surface of the samples were used as reference
points in combination with a particle tracking algorithm49 to follow the
deformation of a gauge zone, giving access to axial and lateral strains. The
volumetric strain was deduced using the fact that the samples preserve their
symmetry of revolution during deformation.

Discrete element calculations. Fibre mechanics was modelled using Kirchhoff’s
elastic beam theory36 with a discretization scheme proposed in ref. 37. We used an
in-house code available on request by contacting the corresponding author.
Inextensibility was enforced by linear tensile springs inside each segment, and fibre
contacts by repulsive potentials acting when the distance between any two
segments becomes less that the fibre diameter38. The fibre diameter was 0.5mm
and the helix diameter 3.5mm to match the experiments. Each helix turn was
discretized in 10 segments with a total of 10,000 segments. The small curvature
configuration was obtained with a larger helix diameter (350mm) and fewer helical
turns (10) discretized in 1,000 segments.

The cylindrical sample was constructed by first relaxing without contacts a tube
of diameter 3.5mm inside a cylinder of diameter 50mm, modelled by a repulsive
potential (Supplementary Section IV). A helix was then created inside the tube,
which was again relaxed and compressed quasistatically including contacts to reach
the final dimensions L0=H0=20mm. This structure was then set as an
equilibrium initial configuration for the subsequent deformation cycles. With the
periodic boundary conditions (Supplementary Section IV), we used a cubic cell
(size L, with L0=20mm) and created the initial fibre as a toroidal helix of large
diameter (2,000mm) in a plane irrational with the cell faces. The periodic
conditions then forced the initial torus to fold onto itself in the primary cell,
creating numerous contacts between segments. This configuration was relaxed,
keeping the cell dimensions fixed and the relaxed structure was set as an
equilibrium initial configuration.

The configurations were incrementally deformed by increasing or decreasing
the vertical cell dimension by small increments (±10−4 mm), followed by energy
minimizations. With the cylindrical samples, we constrained the altitude of the
nodes within two fibre diameters from the top and bottom surfaces. Forces on these
nodes were used to compute the axial stress. Lateral and volumetric strains were
obtained by sectioning the sample in thin slabs of height 5×10−3 mm and
summing their surfaces and average radii extracted from Voronoi tessellations.
With periodic boundary conditions, the vertical cell dimension was constrained,
while the lateral dimensions were adapted to maintain zero lateral normal stresses.
Stresses were obtained analytically from the Virial expression and strains from the
evolution of the cell dimensions.
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