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ABSTRACT

Modeling the mechanics of human vocal folds during phonation is still a challenging task. This
is partly due to the mechanics of their soft and highly anisotropic fibrous tissues, which can
undergo finite strains with both elasticity and strain rate sensitivity. In this study, we propose a
visco-hyperelastic micro-mechanical model capable of predicting the complex cyclic response of
the vocal-fold fibrous tissues based on their histo-mechanical properties. For that purpose, we
start from the hyperelastic micro-mechanical model proposed in [Terzolo et al., J Mech Behavior
Biomed Mater 128 (2022)]. We include in the model non-linear viscoelastic contributions at the
fibril scale to account for the dissipative and time-dependent response of vocal fold tissues. The
relevance of the model is demonstrated and discussed through comparison with a comprehensive
set of reference experimental data, within a wide range of loading modes, strains, and strain
rates: cyclic and multiaxial loadings at finite strains (tension, compression and shear); small
(SAOS) and large (LAOS) amplitude oscillatory shear from low to high frequencies. This study
elucidates how the viscoelasticity of vocal-fold tissues can result from combined time-dependent
micro-mechanisms, such as the kinematics and the deformation of their fibril bundles, as well
as the mechanical interactions likely to develop among fibrils and the surrounding amorphous
matrix.

Keywords: Vocal folds, Fibril, 3D microstructure, Multiscale mechanical modeling, Viscoelasticity, Multiaxial loadings, SAOS, LAOS

1 INTRODUCTION

Human vocal folds are soft laryngeal structures with remarkable mechanical properties. During phonation,
the vocal folds deform under the action of pulmonary airflow and laryngeal motions, sustaining vibrations
in a wide range of amplitudes, frequencies (from 50 Hz to over 1500 Hz), and degrees of collisions.
These multiple configurations involve complex and coupled multiaxial mechanical stresses (in tension,
compression and shear), that the tissues can withstand upon finite strains at various strain rates (Miri, [2014;
Vampola et al., [2016). These properties are inherited from the composite and hierarchical structure of the
vocal folds and surrounding laryngeal muscles. More specifically, the vocal folds are made up of two main
load-bearing layers: the lamina propria, i.e., a loose connective tissue, and the vocalis muscle. Both layers
are composed of networks of collagen, elastin and/or skeletal muscle microfibrils, embedded in a soft
hydrogel-like matrix (Fig. m; Hirano (1974); Benboujja and Hartnick! (2021)); |Ferri-Angulo et al.| (2023))).
However, to date, our knowledge is still not sufficient to understand the relationship between the fibril-scale
architecture of vocal folds and their macroscale (tissue-scale) time-dependent performances.
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This is mainly ascribed to the difficulty to characterize the vocal folds mechanics at high physiological
strain rates. Although recent progress has been made in time-resolved 3D microimaging of fast-vibrating
structures (Klos et al., [2024]), to date, characterization of the mechanical behavior of vocal-fold tissues at
high frequencies (e.g., from 100 Hz to 1 kHz) is still limited to the macroscale. High-speed videostroboscopy
used in clinical voice assessment enabled the quantification of the time-decay of vocal-fold vibrations
at phonation offset (DeJonckere and Lebacq, 2020; Radolf et al., 2022), and of resonance properties by
external excitation of the larynx (Svec et al., 2000). Such in vivo approaches allowed to measure an average
damping ratio ¢ ~0.07-0.20, describing the dissipation of stored energy in oscillations for frequencies
between 100 and 200 Hz (gvec et al., 2000; |DeJonckere and Lebacq, [2020; Radolf et al., [2022), and which
partly arises from the viscoelastic behavior of the tissues. The time-dependent mechanical properties of
vocal-fold tissues have also been demonstrated ex vivo by numerous phenomena, including strain-rate
sensitivity of stress-strain behavior, creep, stress relaxation, stress hysteresis and related accommodation
upon cycling, with the magnitude of the hysteresis loop dependent on strain rate (Kelleher et al., 2013a;
Chan and Titze, |1999, 2000; |(Chan, 2004} |Klemuk and Titze, 2004; Titze et al., 2004; Chan and Rodriguez,
2008; Miri et al., 2014} Chan, 2018}; |(Cochereau et al., 2020). Viscoelastic properties of excised lamina
propria samples were mostly studied using standard shear Dynamic Mechanical Analysis (DMA), also
called Small-Amplitude Oscillatory Shear (SAOS), i.e., within the linear regime (Chan and Titze, 1999,
2000; Chan, 2004; Klemuk and Titze, 2004; Titze et al., 2004; Chan and Rodriguez, |2008)). Such works
allowed to characterize the shear storage G’ and loss G moduli of the vocal-fold “cover” (i.e., superficial
sublayer of the lamina propria combined with the epithelium that covers it) for excitation frequencies f
up to 250 Hz. Thereby, these dynamic moduli increase (resp. decrease) with the applied frequency (resp.
strain), while the loss factor (tan § = (* = G” /G’; Dashatan et al.|(2023)); Koruk and Rajagopal (2024))
decreases monotonically with frequency, down to a mean value of 0.73 for f within 100-250 Hz (Chan
and Rodriguez, 2008). Such experiments were recently extended to Large-Amplitude Oscillatory Shear
(LAOS), showing that lamina propria sublayers experience intercycle strain softening during oscillatory
strain sweeps, intracycle strain stiffening, shear thinning while increasing the shear rate, as well as complex
stress hysteresis that depends on the applied strain and strain rate (Chanl 2018]).

To better analyze these data and unveil the underlying mechanisms, several theoretical approaches
were adopted. Some phenomenological approaches were first developed (Zhang et al., 2006, 2007, 2009).
However, the constitutive parameters of these models can hardly be related to relevant histological
descriptors of the vocal tissues. Since 2010, a few authors have purposely proposed micromechanical
models including the architecture of vocal tissues to open a new insight into voice biomechanics. Two
modeling routes have been adopted:

(1) Poroelastic formulations have been developed to describe the fluid/solid phases of vocal tissues and
to predict their dynamics (Miri et al., 2014; [Tao et al., 2009; Scholp et al.l |2020). However, such
approaches rely on parameters which are still lacking experimental measurements (e.g., permeability, in
situ observations of fluid dynamics, etc.).

69 (i) Other authors have idealized the architecture of the fibrous networks of the lamina propria and the vocalis
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(e.g., using structural descriptors such as the fibril volume fraction, diameter, preferred orientations, efc.)
to derive their mechanical contribution from microstructural and/or micromechanical measurements
(Mir et al., 2013 [Kelleher et al., [2013bj; [Terzolo et al., [2022)). This enabled the identification of the
strain-induced micromechanims (e.g., progressive elongation and reorientation of collagen fibrils and
myofibrils, mechanical interactions between microconstituents, efc.) which modulate the nonlinear and
anisotropic mascrocale behavior of vocal tissues (Terzolo et al., 2022)). However, these micromechanical
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formulations have been developed within a general hyperelastic framework, thus neglecting the important
dissipative and time-dependent mechanisms likely to develop during the vibrations of vocal tissues.

Therefore, this work aims at providing a multi-scale mechanical model able to reproduce the non-linear
macroscopic visco-hyperelastic mechanical behavior of the vocal fold layers (i.e., lamina propria, vocalis)
from low to high frequency and strains, from the knowledge of their architecture and mechanics at the
fibril scale. To do so, we introduce microstructural time-dependent effects to the hyperelastic formulation
developed in|(Terzolo et al.| (2022). Based on histological and biomechanical data available in the literature
and covering a wide range of loading modes, strain levels and rates, the model suitability to predict the
time-dependent multiscale mechanics of the vocal-fold layers is highlighted and discussed.

2 FORMULATION OF THE MICRO-MECHANICAL MODEL
2.1 Structural assumptions

The structural assumptions of the model are identical to those reported in Terzolo et al.|(2022). Briefly,
both the lamina propria and the vocalis are considered as incompressible composite materials made of a
gel-like matrix (composed of cells, elastin, gel-like ground substance for the lamina propria and elastin,
proteoglycans, glycoproteins for the vocalis) reinforced by a network of connected and orientated fibril
bundles (Fig.[I)):

e For the lamina propria (Fig. [T}, case @), each fibril bundle is seen as an assembly of parallel collagen
fibrils of initial diameter dj, length EZ , and tortuosity &y = Eg /o, lp being their initial chord length. They
are characterized by a waviness of about 10 monomodal sinusoids between nodes, with a wave amplitude
Ry and a spatial periodicity Hy, so that /y ~ 10 Hj at rest.

e For the vocalis (Fig. [, case @), each fibril bundle is seen as an assembly of parallel myofibrils (of
initial diameter dg,,, tortuosity &p,,, wave amplitude Ry,,, spatial periodicity Hy,,, and chord length
¢y =~ 10Hy,,), surrounded by a sheath of collagen fibrils (of initial diameter dy., tortuosity &y., wave
amplitude Ry, spatial periodicity Ho.).

e The fibrous architecture of the lamina propria exhibits a collagen fibril content ® (yielding to n
collagen fibrils in Fig. [Th), whereas the vocalis displays a collagen fibril content ®. and a myofibril
content @, (yielding to n . collagen fibrils and n f,,, myofibrils). Both tissues are idealized as networks
of connected fibril bundles. These networks are built from the periodic repetition of a representative
elementary volume (REV), composed of 4 fibril bundles connected to a central node Cyp, and to the 4
nodes C;, of corresponding neighboring REVs at their extremities (Fig. [Ib). At rest, each fibril bundle
i is also characterized by its initial mean orientation E; as depicted in Fig. [Ib. This set of orientation
directors introduces structural anisotropy. The distances between node Cy and its unconnected neighbors
C, (see dotted lines in Fig. ), i.e., along the initial directions E, = CyC,/||CoCy||, are noted .

2.2 Micromechanical assumptions

Kinematics — When subjected to a macroscopic transformation gradient F' and a macroscopic velocity
gradient L, the tissue REVs deform from their initial configuration to a deformed one. As a consequence,
fibril bundles (un)fold so that their chord length is ¢; = ¢y||F - E;|| in the deformed configuration, i.e., with
a tensile stretch and strain \; = ¢; /¢y and ¢; = In \;, respectively. This process occurs at a tensile strain
rate £; = e; - L - e;. Moreover, fibril bundles also rotate so that their current mean orientation directors
become e; = F - E;/||F - E;|| in the deformed configuration, thus introducing a strain-induced change in
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the structural anisotropy. Lastly, the rotation and the deformation of fibril bundles is not free and hindered
by steric effects between bundles. Steric effects are captured by restraining the motion of the node Cy with
respect to its unconnected neighbors C,. These restrictions occur along e, = F - E,/||F - E/|| at a strain
rate £, = e, - L - e, (see dotted lines in Fig. [Tp), once the distance J, between Cy and the neighboring
nodes C, exceeds a critical distance d., i.e., below a contact strain ¢, = In(J,/d.).

Mechanics of the matrix — Regardless of the considered tissue, the mechanics of their matrix, is modeled
as an incompressible hyperelastic neo-Hookean medium with a strain energy function W = 0.5u(1 —
®)(tr(F - FT) — 3) which involves the shear modulus y of the matrix.

Mechanics of the fibrils — The stretch (or the compression) of each fibril of a bundle ¢ generates a non-linear
fibril reaction force. This force is noted t; = t;e; for the collagen fibrils of the lamina propria, and
tim = time; and t;. = t;.e; for the collagen fibrils and the myofibrils of the vocalis, respectively. In order
to mimic both the non-linear elasticity observed during the tension-compression of collagen fibrils as well
as their time-dependent response, the following decomposition of the reaction force is proposed for the
lamina propria (similar decompositions are proposed for ¢;,,, and ¢;. in the case of the vocalis):

ti = t§ +7°, (D

where t{ represents the (non-linear elastic) “neutral” response of the considered fibril, i.e., when the system
attains its “relaxed” configuration. The expression proposed in [Terzolo et al.|(2022) is used: it provides
relevant estimate of the unfolding of fibrils while accounting for their dimension (diameter d, chord length
{o and tortuosity £p) and mechanical properties (elastic modulus Ef). Thus, ¢f is an hyperelastic function

of g;: )
d Er—
t; = % Eeqoi + —L——2 Peao ( & + \/ —In&)’ +a? - \/1n §0+042>] ; 2

when the fibril is stretched; only the first term of the bracket being kept when the fibril is compressed.
This expression involves a curvature parameter « that ensures, during fibril unfolding, a proper transition
between bending- and stretching-dominated regimes. In addition, the initial apparent modulus of the
fibril in the folded configuration E.q = E (cos fo) / [(cos? Bo) + 16 (v?) /d3] (with (-) = 1 EO - du,

<v2> = R% /2 and By = arctan(QWf[—g coS FU)) is estimated from the literature (Potler—Ferry and Siad,
1992).

Also in Eq. (T), ¢}° represents time-dependent phenomena, including those related to the fibril deformation
itself, the fibril interactions with the other fibrils and/or the surrounding gel-like matrix. These molecular-
scale mechanisms exhibit characteristic relaxation times (Gautier1 et al., 2012 Mir et al., [2013) that
are not captured by the hyperelastic formulation proposed for ¢§ in Eq. (2). A fine quantification of
these transient complex processes would require molecular-scale analyses based on statistical physics or
numerical simulation using molecular dynamics approaches (Gautieri et al.,|2011; Bantawa et al., [2022).
Here, as a first approximation, we consider a simple approach at the scale of the fibrils to account for them.
Indeed, we assume that the aforementioned time-dependent phenomena can be reproduced by a non-linear
viscoelastic Maxwell model, as schematized in Fig. :

dz

. E
e+ e = rE e, (3)
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where F/ and 7 are the elastic modulus and the viscosity of the Maxwell model, respectively. As vocal-fold
tissues exhibit several relaxation times over a wide range of strain rates (Chan and Titze, 1999, 2000; Chan
and Rodriguez, [2008; |(Chan, 2018), it is necessary to include these effects in the last equation. For example,
SAOS studies (Chan and Rodriguez, |2008) performed on lamina propria samples report a Carreau-like
evolution of the complex viscosity with the shear rate, i.e., with a Newtonian plateau at low shear rates
and shear-thinning evolution at high shear rates. These aspects are taken into account by assuming that the
viscosity 7 is a nonlinear Carreau function of the viscous strain rate:
n—1

ve 2 2
4t;

€ T B
n=mo |1+ | ——" , )
€0

where 1) 1s the viscosity of the Newtonian regime, ¢ is the strain-rate transition between the Newtonian
regime and the shear-thinning one, and n is the power-law index driving thinning effects at high strain rates.
Expressions similar to Eqs. (2H4)) are proposed for the vocalis, further assuming that Ey. = Ep,, = E,
M0c = Nom = 105 Ec0 = EmO = €05 e = Ny, = N.

Steric interactions between fibril bundle - For both tissues, once the distance J, between the node Cy
and the neighboring nodes C, exceeds a critical distance ., i.e., below a contact strain ¢, = In(d,/0.),
steric interactions occur via reaction forces Ry, = Rge,. A decomposition similar to Eq. (I)) is proposed to
account for non-linear viscohyperelastic effects:

R, = RS+ RY, (5)
where the hyperelastic term 7 is that proposed in Terzolo et al.|(2022):

Ry = B H(gg) ey, (6)
where H is the Heaviside function, and where 3 and « are interaction parameters. To account for non-linear
viscoelastic interactions, R}]’e is derived from the following non-linear Maxwell equation:

. B
Ry + WRSE = E'soéq. (7)

In analogy with Eq. 4} the viscosity 1’ is assumed to be a Carreau function of the corresponding steric
strain rate:

9 n—1
. 2
AR,

4T TR

n=mn |1+ : (8)

V
€0

where 7, is the viscosity of the Newtonian regime, and £ is the transition strain-rate between the Newtonian
and the thinning regime.
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2.3 Upscaling formulation: from micro to macroscale mechanics

Given the structural and micromechanical features mentioned above, regardless of the tissue concerned,
the macroscopic Cauchy stress tensor o can be written as:

0=—pd+om+0p+ 05 9

where p is the incompressibility pressure, b the identity tensor, o,, = F - (9WW/ 8F)T the stress contribution
of the matrix, and where 0 and o represent the stress contributions due to the (un)folding of fibrils and
their steric interactions, respectively. Thus, one gets:

tiN 10
of = Wd%ﬁo E e ®e;, (10)
and ;
)
Oy = —5— R0 e, ®e (11)
i & e

for the lamina propria, where 0; = J,//o, and:

4
. D
f Wd%cgoc ; w”cr\ e’L ® eZ _'_ 7Td2 gom ; im el ® ez ( )
and
o, D, )
05 = + Ry e, @e (13)
’ ( Trd(Q)cgoc 7d0m£0m ; 1 1
for the vocalis. Thus, as an oversimplified representation, the proposed micro-mechanical model can be

thought as the imbrication of two anisotropic networks of non-linear Zener models embedded in a isotropic
hyperelastic matrix (Fig. [T): one for the mechanics of fibril bundles, one for their steric interactions.
The mechanical response of the lamina propria (resp. vocalis) depends on 19 (resp. 25) histological and
micro-mechanical parameters to be determined:

e 6 (resp. 10) histological parameters: the fibrils diameter dy (resp. do. and dp,,), their waviness amplitude
Ry (resp. Ro. and Ry,,), spatial periodicity Hy (resp. Ho. and Hy,,) from which their tortuosity &y (resp.
&oc and &pyy,) can be estimated, the fibrils volume fraction ® (resp. ®. and ®,,,) and initial 3D orientation
(6o, o). These structural parameters can be determined from histological data.

o 13 (resp. 15) mechanical parameters: the fibrils Young’s modulus modulus F (resp. Ky, and Ey,,), the
matrix shear modulus p, the transition parameter « (resp. «. and ), the elastic interaction coefficients
f3, r and ¢ related to steric effects, and the viscoelastic parameters E, 1o, £o, n and E’, 1, .

3 MODEL IDENTIFICATION
3.1 Experimental database

The relevance of the model was evaluated by comparing its prediction with experimental data from the
literature:

Frontiers 6
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198 e Firstly, to assess the model relevance in the linear viscoelastic regime at small shear strains, we
199  considered the data collected by Chan and Rodriguez (2008): “cover” specimens were excised from 7
200  donors (2 females, 5 males), between 53 and 88 years old (mean age 67). Tissues were collected between
201 3 to 20 h post-mortem before being tested (mean time 10 h). The excised tissues were then subjected
202  to SAOS at physiological conditions (T ~ 37°C, 100% relative humidity). An oscillatory shear strain
203 7.z = 7o sin(27 ft) was applied in the “longitudinal” plane (e, e,), with a prescribed small shear strain
204  amplitude 9 = 0.01, and a frequency f varied from 1 to 250 Hz. In the following, trends derived from
205 these 7 donor-specific covers are represented by an “average target vocal-fold cover” noted Cg405-

206 e Secondly, the model ability to reproduce oscillatory responses in the non-linear regime (upon finite
207  strains) was investigated with respect to the data reported by (Chanl (2018]). The author subjected a
208  60-year-old male “cover” to LAOS with several increasing strain amplitudes o = [0.05, 0.1, 0.2, 0.5, 1]
209  along the plane (e., e,) at a prescribed frequency f = 75 Hz. In the following, the sample chosen as a
210  reference here is noted Cy, 40g-

211 e Thirdly, the model prediction was compared with vocal-fold layer samples deformed at finite strains
212 and multiaxial physiological loadings (i.e., tension, compression, shear) as reported in [Cochereau et al.
213 (2020): two samples of lamina propria (covered by the very thin epithelium left intact, noted LP; and
214 LP»3), and two samples of vocalis (noted Vi and V3). As a reminder, each sample was sequentially
215  subjected to longitudinal tension along e, transverse compression along e, and longitudinal shear in the
216  plane (e,, e;). For each loading mode, samples were subjected to 10 load/unload cycles up to Hencky
217 strains €% = 0.1, ™" = —0.2 and shear 7% = (.6, at constant strain rates |¢,.|, |¢,.| and |5,.| of

zZZ zZx

218  ~ 103 s L.

219 3.2 Optimization procedure

220 A protocol similar to that adopted in [Terzolo et al. (2022 was applied to obtain optimized sets of
221 histo-mechanical parameters:

222 e For SAOS and LAOS experiments, all histological parameters were initialized and constrained within
223  a corridor of admissible values deduced from the literature, as detailed in [Terzolo et al.| (2022): 0° <
224 0 <507,20° < pp<90°,10 um < Hy <70 pm, 1 pm < Ry < 10 pm, 10 nm < dy < 500 nm,
225 0.15 < & < 0.55. For multi-axial experiments achieved with lamina propria and vocalis samples
226 (Cochereau et al., 2020), we chose the histological parameters already determined in Terzolo et al.|(2022),
227  asreported in table[l]

228 e For SAOS and LAOS experiments, some of the hyperelastic parameters were constrained within
229  physiological boundaries, i.e., the fibril’s Young modulus 1 MPa < E; < 1 GPa, the matrix shear
230  modulus 1 Pa < p < 1.5 MPa. The other parameters, i.e., the transition parameters « and the interaction
231 coefficients [, x and ¢., were let free. It is also important to note that steric interactions are not triggered
232  during simple shear, thus yielding to undetermined parameters 3, x, 6. for SAOS and LAOS. For the
233  multiaxial experiments performed with lamina propria and vocalis samples, we took the hyperelastic
234  parameters determined in Terzolo et al. (2022), except the shear moduli of the matrices ;» which were
235  looked for in between 1 Pa and 1 MPa (see comments in the next section).

236 e The positive viscoelastic parameters, i.e., E, 1o, €0, n and E’, n){, and ¢, were freely optimized for each
237  of the experiments considered. For SAOS experiments, the power-law exponent n was looked for in
238  between 0 and 1 to mimic the recorded shear-thinning behavior (Chan and Rodriguez, |2008). As the
239  LAOS and the multiaxial experiments were performed at a unique strain rate, n could not be determined
240  and was arbitrarily set to the value found for SAOS experiments.
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A non-linear constraint optimization process based on a least-squared approach was used to minimize
the discrepancies between the model prediction and the experimental macroscale stress-strain curves, as
in Bailly et al.| (2012); Terzolo et al.| (2022). The time-integration of the implicit non-linear Maxwell
differential Egs. [3|and 7| was achieved using the odel5i solver in Matlab® (Shampine, [2002).

4 RESULTS AND DISCUSSION

4.1 Relevance of histo-mechanical parameters

The set of optimized histological parameters used to reproduce the macroscopic rheological data during
SAOS (Chan and Rodriguez, [2008)), LAOS (Chan, 2018) and multi-axial loadings (Cochereau et al., [2020)
are reported in table[I] Apart from the remarks already stated in Terzolo et al. (2022) for the relevance of
these parameters for LP; and V; samples, these values conjure up the following comments:

Sample | 0o (°) | ¢o (°) | Ho(um) | Ro (um) [ do(pm) | & | &

Csaos | 10.5 83.7 34.5 7.3 0.21 030 | 1.34

Craos | 32.6 | 65.7 45 4.5 0.23 0.30 | 1.11
LP; 16 83 42 5 0.4 046 | 1.13
LP, 16 83 42.5 5 0.4 048 | 1.13
Vic 33 70 28 6.4 04 0.1 1.4
Vim 33 70 1350 130 1 0.7 | 1.08
Vo 28 67 30 5.5 0.4 0.12 | 1.28
Vom 28 67 1620 90 1 0.7 | 1.03

Table 1. Optimized histological parameters for samples Csaos, Cra0s, LP1, LP2, V1 and V. Gray-
colored columns refer to quantities computed as a function of the determined histological parameters.

e The optimization led to a collagen content ¢ of ~ 0.47 for LP; samples (i.e., including the epithelium,
the cover, the intermediate and the deep layers) versus only ~ 0.30 for the cover Cg40gs. This finding
is consistent with prior experimental evidence, showing that the first sublayer beneath the epithelium,
i.e., the superficial layer of the lamina propria also called "Reinke’s space”, exhibits a fibril content lower
than that found in the intermediate and deep layers of the lamina propria (Hahn et al., 2006b; Walimbe
et al., 2017; Bailly et al., 2018]).

e The optimization also yielded to a collagen fibril diameter dg close to 200 nm in the cover Cg 405,
against dg ~ 400 nm in the LP; samples. Such a decrease may be explained by the dy-variations reported
with the collagen type (Asgari et al., 2017), and with their location across the lamina propria (Gray et al.,
2000; Tateya et al., 2006; Hahn et al.,|2006a; Munoz-Pinto et al., 2009; Walimbe et al., [201°/; Benbouyja
and Hartnick, 2021)). In particular, Munoz-Pinto et al.| (2009) measured that the content of “thin” (resp.
“thick’) collagen fibrils decreases (resp. increases) steadily and about 10-fold (resp. 15-fold) from the
superficial to the deep layers.

e The optimized fibril tortuosity £ at rest is ~ 20% higher for the Cg 405 experiments than that estimated
for the LP; samples. This is consistent with previous observations showing that the intermediate layer of
the lamina propria is characterized by a dense network of straighter ECM fibrils compared with that of
the superficial and deep layers (Klepacek et al.,[2016; Bailly et al., 2018).

e The histological parameters found for the cover sample Cy, 40g are very close to the values obtained
for the cover samples Cg 405. The main differences concern the initial fibril orientation (6 and ) and
tortuosity (£y). This can be attributed to inter-subject variability.
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270 e The histological parameters of collagen fibrils in the vocalis are rather similar than those found for
271 SAOS, LAOS and LP; samples, except for the fibril content which is much lower. Conversely, the
272 histological parameters of myofibrils are obviously very different.
273  In addition, the optimized micro-mechanical parameters used to reproduce the macroscopic rheological
274 data during SAOS (Chan and Rodriguez, 2008), LAOS (Chan, 2018) and multi-axial loadings (Cochereau
275 et al,[2020) are reported in tables 2] and 3] for hyperelastic and viscoelastic contributions, respectively. The
276 reader is referred to [Terzolo et al.| (2022) for the relevance of the hyperelastic parameters in the cases of the
277 LP; and V; samples. Also, the following remarks can be brought:
Sample | Ey (MPa) | 11 (Pa) a B(N) | k[ d(um)
Csaos 720 31 1.61073 - - -
Craos 720 30 461073 - - -
LP, 847 200 [4410°] 2107* [3] 66
LP, 847 190 [43107°| 4107* [3 ] 657
Vic 847 170 [ 441073 [ 2210743 367
Vim 0.05 170 [1.11072] 2107* |3 367
Vo, 847 170 [ 44107376107 |3 360
Vom 0.05 170 [2710°%]7610° |3 [ 360
Table 2. Optimized hyperelastic parameters for samples Cs 105, Cra0s, LP1, LP2, V1 and Va.
Sample | E (MPa) | no (MPas) | £ (s™!) n | E'(MPa) | nj (MPas) | ¢} (s7!)
Csaos 3.68 1.56 2.1 x 1073 | 0.27 - - -
Craos 4.19 1.14 1.9 x 1073 | 0.27 - - -
LP; 1.47 14.2 5x107* 1027 0.99 8.3 55 x 1073
LP, 1.3 19.6 6x107* 027 1.63 16 45 %1073
A%t 0.11 0.38 3.6 x 1073 | 0.27 0.11 0.53 45 x 1073
Vo 0.11 1.06 33 x 1073 [ 0.27 0.07 0.67 45 x 1073
Table 3. Optimized viscoelastic parameters for samples Cs 105, Cr. 405, LP1, LP2, V1 and Vo.
278 e For the LP; and V; samples, the shear modulus of the matrix p-coefficient was re-optimized
279  (within physiological boundaries) as the mechanical contribution of the matrix is here related both
280  to the hyperelastic and the viscoelastic contributions (which encompass the fibrils/surrounding matrix
281 interactions). Thus, the optimization process led to (200 Pa, 190 Pa) for (LP;, LP3), against (330 Pa,
282 290 Pa) inTerzolo et al.|(2022); and to 170 Pa for both V; samples, against (900 Pa, 980 Pa).
283 e Asemphasized in table 2] the matrix shear modulus /4 is nearly 10-fold lower for the cover samples
284 Cgaos and Cy 40g than for the entire LP; samples. The value identified for Cg40g and C 40 are close
285  to the range measured for the elastic shear modulus of hyaluronic acid p7 4 ~ 20-50 Pa (estimated at
286  loading frequencies up to 10 Hz; Heris et al. (2012)), i.e., the most abundant polymer of the ground
287  substance in the lamina propria. Known to play a key role in shock absorption during vocal-fold collisions,
288  hyaluronic acid is found with a higher volume fraction than collagen and elastin in the superficial layer,
289 by contrast with the deep layer (Finck, 2008; Hahn et al., 2006a,b), which is in line with the identification
290  result (see table[I]). The observed discrepancy in y-values in table [2]is probably ascribed to the scarcity
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of elastin fibrils reported in the superficial layer (and therefore in the cover) in elderly tissues (Roberts
et al., 2011).

e The hyperelastic parameters related to the collagen fibril networks are very similar regardless of the
considered samples, i.e., SAOS, LAOS and LP; and V; samples. Due to the much softer passive mechanics
of myofibrils, their hyperelastic parameters are much lower. Probably for the same reason, the optimized
viscoelastic parameters (£, 1, €g) found for the lamina propria, the SAOS and for the LAOS samples
differ by an order of magnitude with those reported for the vocalis.

e The viscoelastic parameters of the LP; samples have been identified at a very low strain rate, i.e., close
to £¢. At this strain rate, the relaxation times 7 ~ 1/ F = 3-15 s are obtained for both vocal-fold layers
(similar relaxation times 7/ = 1),/ E’ were found for fibril bundle steric hindrance). It is interesting to
note that these results are in line with the rare experimental data available at this scale (Yang, 2008}
Shen et al., 2011} Gautieri et al., 2011). For example Shen et al.| (201 1) report typical relaxation times
of solvated collagen fibrils in the range of 7-102 s. Also,|Yang (2008) measured two distinct processes
contributing to the stress relaxation of native collagen fibrils immersed in PBS buffer and subjected to
5-7 % strain for 5-10 min: a fast relaxation process with a characteristic time 71 ~ 1.8 0.4 s, and a
slow relaxation process with 75 ~ 60 £ 10 s. Yang proposed that 71 corresponds to the relative sliding
of collagen microfibrils, while 7 refers to the relative sliding of collagen molecules (due to the high
level of cross-links between molecules). It is interesting to note that the characteristic times reported
for the SAOS and LAOS samples are markedly lower, i.e., 7 = 19/ E ~ 0.42 s and 0.27 s, respectively.
Bearing in mind that the model parameters for SAOS and LAOS were determined from experimental
data acquired at high frequencies (from 1 to 250 Hz for SAOS, and at 75 Hz for LAOS), these low valued
characteristic times are not surprising: additional data at lower strain rates would probably increase these
values.

4.2 Relevance of the micro-mechanical model for SAOS

A comparison between the model predictions at macroscale and the SAOS experimental data is provided in
Fig. 2 In this figure, graphs (a) and (b) show the evolution of the shear storage and loss moduli G’ and
G" of sample Cg 405 as functions of the excitation frequency f, whereas graphs (c) and (d) do the same
for the loss factor ¢* = G /G’ and the dynamic viscosity ¢/ = G” /27 f, respectively. In these graphs, the
model predictions were extended up to f = 1 kHz. Different remarks are highlighted from these graphs:

e For all the rheological functions presented, a fairly good quantitative agreement is obtained between the
model predictions (continuous lines) and the experimental data (marks): progressive increase of storage
and loss moduli G’ and G” with f up to 200 Hz, power-law decrease of the viscosity y’, Carreau-like
evolution of the loss factor (* with a mark power-law decrease above 10-50Hz.

e More particularly, it is interesting to note that the model nicely predicts the experimental “cross-over”
zone around 50-100 Hz, i.e., the zone within which (i) the storage modulus G’ switches from lower to
higher than the loss modulus G”, (ii) the loss factor (* switches from constant to remarkable decrease.
This transition zone also coincides with that where some issues occur during vocal-fold vibration in
human phonation. In fact, for fold vibration at low frequencies, i.e., below 50-100 Hz, viscous effects
dominate (G” > G) so that this should give rise to critical tissue overdamping preventing proper periodic
oscillations of vocal folds. In contrast, the dominant elastic properties at higher frequencies should
restrain tissue damping (see the power-law decrease of the loss factor in Fig. [2(c)), thus allowing the
occurrence of proper periodic motion during vocal fold vibration (Chan and Rodriguez, 2008)).
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e To illustrate the role of histological parameters on the rheological response of SAOS samples, we have
reported two additional discontinuous lines in Fig. 2| These trends emphasize the effects induced by
variations of the volume fraction of collagen fibrils ® (here, ® was chosen due to its wide variations
between individuals but also within the vocal-fold layers themselves): the case where & = (.15 and
the case where ® = 0.55, i.e., the minimum and maximum values found in the literature for lamina
propria. As shown in Fig. [2| when ® varies in the physiological corridor, the qualitative trends are
preserved for all viscoelastic properties (G’, G”, (* and ). However, the higher the fibril content, the
higher the rheological functions, albeit with (i) marked differences (for G’ at high frequencies, for ¢*
at low frequencies, e.g., for G”, 1/ at all frequencies) and with (ii) a slight shift of the cross-over zone
towards lower frequencies as ® is increased. Note that the case of ® ~ 0 was also predicted in Fig. [2| as
a theoretical extreme case (not physiological), assuming a quasi-total absence of collagen fibers in the
vocal-fold cover, which would thus become close to a homogeneous, isotropic neo-hookean material
with the same mechanical properties as the matrix alone. These simulations clearly emphasize the major
mechanical role played by the collagen fibrous network, and its interaction with the surrounding ground
substance, in response to the oscillatory shear of the vocal-fold cover.

4.3 Relevance of the micro-mechanical model for LAOS

In Fig. 3, we have reported a collection of Lissajous stress-strain curves predicted by the model. These
curves are compared with LAOS experiments obtained at a frequency f = 75 Hz and cyclic amplitudes
7o varied from 0.05 to 0.5. In addition, Fig. [3b presents a series of normalized Lissajous stress-strain
curves predicted by the model in the Pipkin space { f, 70} or { f,e/"**} (¢]"** is the maximal cyclic tensile
strain the fibrils are subjected to), when f and 7 are varied from 50 Hz to 1kHz and from 0.05 to 0.5,
respectively (Ewoldt et al., 2008; Chanl [2018)). Within each contour plot, the black line represents the total
visco-hyperelastic stress, whereas the red line is the hyperelastic or neutral stress contribution. Different

trends can be highlighted:

e Influence of the strain amplitude ~y — Fig. [3h shows a very good quantitative agreement between the
model predictions (red line) and the experimental data at stabilized cycles when 79 < 0.2. In particular,
the model is able to capture the strong non-linear response of the tested sample with, in particular, a proper
modeling of the stress hysteresis induced by viscoelastic effects. In addition, the cyclic stress-strain curves
progressively deviate from a linear strain hardening at low shear strain amplitudes (g < 0.1), which
corresponds to the initial linear (un)folding of collagen fibril at small strains, towards a marked non-linear
strain-hardening at higher strain magnitudes (in J-shape), where the non-linear hyperelastic stretching of
collagen fibrils is triggered. This trend is also fairly well illustrated by the neutral stress responses of the
Pipkin diagram shown in Fig. [3p. This diagram also proves that the trend is preserved independently of
the cycling frequency. Lastly, it is worth noticing from Fig. [3a that the predicted strain-hardening at the
highest strain magnitude vy = 0.5 largely overestimates the cycle observed experimentally. Presumably,
during the experiments, the tested cover exhibited a Mullins-like effect, as often observed in elastomers,
gels and soft living tissues (Diani et al., 2009; Pena et al., [2009; Rebouah et al., [2017; Rebouah and
Chagnon, [2014; [Zhan et al., 2024). This could yield to a stress softening of their mechanical behavior
upon cycling. The Mullins effect can be caused by a number of irreversible mechanisms, e.g., the rupture
of physical or covalent cross-links and the possible disentanglement of molecular chains, etc. These
mechanisms are not taken into account in the current micro-mechanical model. Yet, a possible way
to account for these phenomena would consist in altering, with proper kinetics, the histo-mechanical
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properties of the collagen fibrils, such as their modulus £y (to account for damage) and/or their initial
length E{; or tortuosity &g (to account for disentanglement). In support of this hypothesis to be explored in
future work, Fig. [3a shows that lowering (resp. increasing) F; (resp. §o) from 720 MPa to 400 MPa (resp.
from 1.11 to 1.12) would lead to a more appropriate model prediction of the experimental stress-strain
curve performed at 79 = 0.5 (see green line).

e Influence of the loading frequency f — As shown in Fig. [3b, the loading frequency f markedly alters
the Lissajous curves. Regardless of the strain magnitude 7, the higher the f-value, the higher the stress
levels and the stress hysteresis. These trends are in qualitative agreement with measurements acquired on
other vocal-fold cover samples (Chan, 2018).

4.4 Relevance of the micro-mechanical model for finite strain multi-axial cyclic loadings

Macroscopic stress-strain predictions are compared with the reference experimental data in Fig. 4] (resp.
Fig.[5)), for the lamina propria and vocalis samples LP; and V; (resp. LP2 and V3), and the three cyclic
loadings these samples were subjected to, i.e., longitudinal tension, transverse compression and longitudinal
shear. For each case, the “neutral” curve already predicted in Terzolo et al. (2022) was reported (see dotted
lines). The strain-induced evolution of micro-mechanical descriptors during cyclic tension is displayed
in Fig. [0] (illustrative case of LP; and V), with compression and shear results summarized in Fig.
(illustrative case of LP7).

The results for the first loading cycle are discussed below for each loading mode:

o Longitudinal tension — The model prediction for longitudinal tension along e, is fairly good both for the
lamina propria and the vocalis samples, as emphasized in Figs. @} [5(a). In particular, compared with the
hyperelastic formulation proposed in|Terzolo et al.|(2022), i.e., the neutral curves, the model is now able to
capture the stress hysteresis as well as the residual strains after unloading. These tendencies are inherited
from microscale viscoelastic effects together with the rearrangement of the tissue microstructures. This is
illustrated in Fig. [6]and Supplementary Fig. S1, in which one can assess the irreversible unfolding and
rotation of fibrils that are predicted during cyclic tension both for the lamina propria and the vocalis
samples. It is interesting to note that the predicted stress hysteresis and residual strain of collagen fibrils
were experimentally observed by [Yang (2008). For the vocalis, the predicted tensions in both collagen
fibrils, ¢;., and myofibrils, ¢;,,, are plotted in the inset of Fig. [0p. If the key role played by the sheaths of
collagen fibers surrounding muscle fibers in the tissue passive tensile properties was already evidenced
during monotonic loading, the strong contribution of myofibrils to inelastic effects and residual strains
after unloading is here clearly highlighted.

e Transverse compression — Figs. A} [5[b) prove that the model predictions are also in good agreement
with the experimental data recorded during transverse compression. Moreover, as already pointed out in
Terzolo et al.[(2022), steric interactions are of major importance for the lamina propria and the vocalis
mechanics during compression. This characteristic is preserved with the visco-hyperelastic formulation:
if steric hindrance effects are deactivated in the model (see model predictions with "no steric interactions”
in Figs. i} [5(b), dash-dotted lines), the deformation of the visco-hyperelastic fibril bundles is not sufficient
to capture the lamina propria stress hysteresis and residual strain experimentally observed. Thus, fibril
bundle repulsion forces R, and their viscoelastic contributions R, appear to be of critical importance
to properly reproduce the compression behavior of both vocal-fold layers c(see “model predictions” in
Figs. @} [5(b), solid lines). No other significant microscale deformation mechanisms (such as rotation
and/or noticeable unfolding of fibrils) were predicted under transverse compression (Fig. [7j).
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e Longitudinal shear — The mechanical contribution of the matrix plays a major role in the overall shear
response of the lamina propria and the vocalis, as already stressed in[Terzolo et al.| (2022). On this basis,
the fibrils viscoelastic properties and interactions with the surrounding ground substance allowed, via the
microscopic tension ¢; (Fig. [7b), to satisfyingly reproduce the experimental trends observed during the
load/unload sequence at the tissue scale (Figs. @} [Bk).

Finally, the relevance of the visco-hyperelastic model to simulate the sequential series of 10 load-unload
cycles and the tissue response as a function of load history is assessed. Figure [§]compares the theoretical
predictions with the reference cyclic data for the three loading modes. If the decrease in stress hysteresis is
qualitatively well captured by the model once the first cycle has been completed in tension, compression
and shear, the predictions fail to simulate the progressive decrease in peak stresses measured after repeated
loading paths, as well as the increase in residual strains after repeated unloading paths, which are particularly
observed in tension and compression. According to the model, a steady state is reached practically after the
first load/unload sequence, whereas stabilized behavior is only really observed experimentally after the 5"
cycle (or even up to the 10" cycle, depending on the sample and loading mode). As mentioned for LAOS
results, these accommodation behaviors resemble Mullins-like effects, that are not taken into account in
the present formulation of the model.

4.5 Relevance of the model for predicting future patho/physiological variations and
assisting biomedical developments

The micromechanical model developed in this work has been calibrated to reproduce the microstructural
specificities and multiscale behavior of healthy human vocal-fold tissues, combining a wide range of
histomechanical measurements collected from the available literature. By adjusting these input data, it can
be adapted and used to predict the multiscale mechanical behavior of pathological human vocal tissues
(Hantzakos et al.| 2009; [Finck] [2008]), animal vocal tissues 2024), or structured (bio)composites
developed to replace/reconstruct the fibrous architecture and vibromechanical performance of the vocal
folds after surgery (Heris et al] 2012} [Li et al| 2016} Jiang et al] [2019; [Latifi et al.| 2018 Ravanbakhsh|
let al.l 2019 [Ferri-Angulo et al.| [2023).

It can also be used to predict the evolution of the mechanical properties of the same tissue following an
alteration in its microstructural arrangement, due, for example, to its natural growth and remodeling with
age (by simulating a progressive decrease in the volume fraction of elastin, an increase in that of collagen,
and muscle atrophy (Roberts et al.|, 2011} [Kuhn| 2014} [Li et al.l 2024)); due to scarring lesions acquired
on the tissue (by simulating fibrosis and an increase in the collagen content as well as changes in fibrils
tortuosity as compared to the healthy case (Heris et al.|, 2015}, [Li et al.| 2016)); due to the appearance of
a lesion following phonotrauma (by simulating damage mechanisms likely to occur at the fibril’s level
(Miller and Gasser},[2022))); or due to a therapeutic treatment (simulating the addition of a soft hydrogel to
the matrix composite, for example (Li et al., 2016 [Mora-Navarro et al.| 2026])).

In order to better understand the impact of these histological variations on vocal-fold vibrations at the
larynx level (in the case of native tissue but also injured, repaired and/or replaced tissue), this original
constitutive law should be implemented in a finite element code reproducing the vocal folds in their
3D anatomical geometry, as in current 3D phonation models (Dollinger, M. et al] [2023)). In doing so,
microstructure-based simulations could not only improve knowledge of the links between the specific
microarchitecture of the vocal folds and their unique macroscale vibratory performance, but also guide the
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design and optimization of fibre-reinforced biomaterials currently under development for functional vocal
restoration.

5 CONCLUSION

A better understanding of human phonation requires an in-depth study of the viscoelastic properties of
vocal folds. To this end, this study proposes to enrich a recent 3D micro-mechanical model of vocal-fold
tissues, hitherto capable of predicting their nonlinear elastic and anisotropic mechanical behavior at various
spatial scales (micro to macro) (Terzolo et al., 2022). This was achieved by adding viscoelastic mechanisms
at the scale of their collagen fibrils and myofibrils bundles. These improvements now enable the model to
capture the viscoelastic properties of vocal-fold tissues from small to finite strains, such as their nonlinear
strain-rate sensitivity — on which their damping and oscillation onset properties strongly depend, their
stress hysteretic response and inelastic deformations typically measured during cyclic loading. In addition,
the model allows the microstructural rearrangements to be predicted, which is often very challenging to
identify experimentally.

This model was successfully used to reproduce various sets of ex vivo data available in the literature, and to
complement them with original theoretical data, providing specific micro-mechanism scenarios for each.
This identification was carried out for a wide variety of loading conditions at different rates: low-frequency
cyclic tension, compression and shear in large deformations; high-frequency oscillatory shear from small
to large deformations (SAOS for the linear viscoelasticity regime, LAOS for the nonlinear viscoelasticity
regime). The model predictions are in quantitative agreement with macroscopic experimental trends, and
clearly highlight the key impact of microscopic histomechanical descriptors on vocal-fold dynamics, such
as the volume fraction of collagen fibrils in the cover, their tortuosity at rest, their mechanics and their
interactions. This micromechanical model can be implemented in finite element codes to further simulate
the transient dynamics of vocal folds with relevant histo-mechanical properties.

However, some model limitations should be improved. For example, (coarsed grained) atomistic/molecular
simulations would probably provide relevant information to strengthen the physical links between the
time-dependent nanostructural rearrangements and the phenomenological approach proposed herein at
the fibril scale. Furthermore, the model does not allow the Mullins-like effects commonly observed in
vocal tissues to be adequately described: combined with additional experiments focused on this aspect, the
model could be improved based on formulations proposed for other materials such as structured elastomers
(Rebouah and Chagnon, 2014; Rebouah et al., 2017).
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Figure 1. Idealization of the vocal-fold layers. (a) The lamina propria ® (resp. the vocalis @) is seen
as a network of (orange) collagen fibrils (resp. (pink) myofibrils and collagen fibrils) embedded into a
gel-like matrix. Fibrils are self-assembled as collagen fibril bundles (resp. myofibrils surrounded by a
shealth of collagen fibrils). Each fibril (and its interaction with its neighboring) behaves as a non-linear
visco-hyperelastic Zener model. (b) The fiber bundle microstructure of each layer is seen as a periodic
network of 4 orientated fiber bundles (brown) connected at one node Cy (blue) embedded in a soft isotropic
matrix (green). The dotted lines illustrate the 5 possible steric interactions of Cp with the neighboring
nodes. Source: Adapted from [Terzolo et al.|(2022).
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Figure 2. Experimental data (marks) vs. macroscale model predictions (lines) obtained for sample Cg40s5:
storage G’ modulus (a), loss G” modulus (b), loss factor ¢* (¢) and dynamic viscosity ' as functions of
the oscillation frequency f. The continuous line represents the best fit of the model, the others illustrating
the effect of the collagen fibril content ®. Source: experimental data adapted from |Chan and Rodriguez|
(2008)). Averaged data and standard deviations from 7 human vocal-fold “cover” specimens are reported.
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Figure 3. LAOS results : a) Macroscale stress-strain data vs. model predictions obtained for sample
Crao0s tested at f =75 Hz and with 7 varied from 0.05 to 0.5. Source: experimental data adapted from
lb b) Predicted Lissajous stress-strain curves plotted in the Pipkin space { f, o} or { f,e]"**},
where £/"* is the maximal cyclic tensile strain the fibrils are subjected to. Black solid lines represent the
total stress, while red solid lines are the neutral contribution.
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Figure 5. Same as Fig. [ for samples LP3 (left, in red) and V3 (right, in blue).
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Figure 6. Evolution of multiscale descriptors for lamina propria LP; (a) and vocalis V1 (b) during tension
along e, : (top left) macroscopic strain paths; (bottom) stereographic projection of the 4 orientation vectors
e; from initial to final state; (fop right) tensile strain of the fibril chord ¢; and corresponding tension ;.
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Figure 8. Same as in Fig. [} albeit for 10 cycles: experimental data vs. model predictions. The experimental
10th cycle is displayed in green symbols for lamina propria sample LP; (left); in orange symbols for
vocalis sample V1 (right). Experimental intermediate cycles are not reported for the sake of clarity.
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