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Abstract
Conduction in fibrous materials made of highly conductive fibres and immerged
in a poorly conductive matrix is modelled above the percolation threshold.
Firstly, limits of discrete approaches generally used to tackle this problem
are determined on elementary fibrous microstructures by comparing discrete
solutions with full finite element calculations. Then, more complex 3D fibrous
microstructures are numerically generated and a discrete element code is used
to analyse the influence of the fibre content, aspect ratio, orientation as well as
the quality of fibre–fibre contacts on the effective conductivity tensor. Lastly,
a semi-empirical analytical expression is proposed to model numerical results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to their lightness and their rather low processing cost, thermally or electrically conductive
polymer composites offer new possibilities for replacing metal parts in applications where
heat and/or electric current have to be transported. Conductive composites can be obtained by
incorporating into the poorly conductive polymer matrix highly conductive particles (metal,
carbon particles etc). Danes et al [1] consider that thermally conductive polymer composites
have to reach a thermal conductivity around 2 W m−1 K−1 in order to be regarded as interesting
solutions. To reach this goal, composites must contain a very high content of conductive
particles [1, 2]: particles have to form a connected network through which heat or current is
mainly transported. In order to lower the particle content, the use of slender particles such as
fibres seems to be an appropriate solution [1–8].

Even if heat or current propagation in heterogeneous materials has been studied for
decades [9–13], predicting effective transport properties of composites reinforced with a high
concentration of conductive fibres is still a challenging subject. Indeed, as fibres are highly
conductive compared with the matrix, predictions given by the usual bounds [14, 15] may be
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inaccurate [16]. Moreover, in this concentration regime, each fibre has at least one contact with
another so that analytical models dedicated to (semi)dilute regimes [17–21] are inappropriate.
At high particle content and high contrast between particles and matrix conductivities, a
possible way to tackle the problem is to neglect conduction in the bulk matrix, except in
the vicinity of particle–particle contacting zones [22–24]. Under such an assumption, many
continuous or discrete numerical models have been established [4, 6, 23–27], allowing (i) to
validate analytical models near the percolation threshold [6, 28–32], i.e. still at rather low fibre
content and (ii) to analyse some microstructure effects on the effective conductivity. Among
them, only fibre orientation, which can play an important role in composites’ conductivity, has
only been extensively considered by Cheng et al [26] with planar fibrous networks and very
good fibre–fibre contacts.

Except for some empirical models [33,34], very few analytical models are able to predict
thermal conductivity in random or oriented highly conductive fibrous microstructures at high
fibre contents. Taipalus et al [3] have successfully used the model proposed by Weber and
Kamal [35] but this model is only suited for 2D microstructures and some fitting parameters
are hard to get from the microstructure. Recently, starting from an upscaling process [36]
and using discrete element simulations [37], new analytical models have been proposed for
3D fibrous microstructures [37]. Nevertheless, these analytical expressions are only suited for
perfect fibre–fibre contacts or, on the contrary, for very resistive contacts. No model has been
proposed for the intermediate situation.

Within that context, the purpose of this paper is (i) to further investigate from discrete
element simulations links between microstructures and effective conductivity in 3D random or
oriented fibrous materials made of straight fibres and (ii) to propose an analytical expression of
the effective conductivity tensor for a large range of fibre contents, aspect ratios and orientations
and for a large range of fibre–fibre contact qualities. For that purpose, the considered local
physics and fibrous microstructure as well as the continuous and discrete models obtained
in [36,37] are briefly presented in sections 2 and 3, respectively. The validity of these discrete
formulations is discussed by comparing results obtained on very simple microstructures with
those given by full finite element calculation (section 4). Then, more realistic 3D fibrous
microstructures are generated and a discrete element code is used to analyse the influence of
the fibre content, aspect ratio, orientation as well as the quality of fibre–fibre contacts on the
effective conductivity tensor (section 5). Finally, an analytical expression is proposed to model
numerical results (section 6).

2. Physics at the fibre scale

We consider a fibrous medium of highly conductive fibres of isotropic conductivity λ plunged
in a stagnant and poorly conductive matrix (conductivity λm � λ). The characteristic length of
the fibrous medium considered is L. The volume fraction of fibres f is considered to be above
the percolation threshold. For the sake of simplicity, fibres are slender cylinders of length l and
cross section S � l2, their volume being noted �. Each fibre fα is oriented along a direction
eα . It is assumed that the structure can be described as a periodic assembly of NR repetitions
(see figure 1) of a representative elementary volume (REV) of the microstructure. The volume
of the REV is noted �R and its typical size lR which is of the same order of magnitude as l,
i.e. lR = O(l). A good separation of scale is assumed, so that the scale separation parameter
ε = l/L is very small. The REV (see figure 2) is made up of a set PR of identical fibres
noted fα . The fibre–fibre contact noted iαβ represents the ith fibre–fibre contact in the REV,
between fibre fα and fβ . CR represents the set of CR fibre–fibre contacts in the REV, whereas
Cα is the set of contacts of the fibre fα .
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Figure 1. The following composite material is made up of conductive copper fibres plunged into
a PMMA matrix (a). It can be represented by a periodic repetition (b) of NR REVs (c).
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Figure 2. Scheme and notations used to define the considered fibrous microstructures: general
view (a) and zoom on a contact zone (b).

The fibrous medium is subjected to a transient thermal loading, whose characteristic wave
length is supposed to be of the same order of magnitude as L. Within each fibre fα , the local
thermal equilibrium reads:

C
∂Tα

∂t
= −∇ · qα, (1)

where Tα is the temperature field in the fibre, C its volumetric heat capacity and where the
heat flow vector qα in the fibre follows Fourier’s law:

qα = −λ∇Tα. (2)

As the conductivity of the matrix is supposed to be much smaller than the conductivity of
fibres, conduction within the bulk matrix, i.e. far from fibre–fibre contact zones, are assumed
to be negligible. Hence, far from fibre–fibre contact zones, the heat flow at the matrix–fibre
interface �α of local normal nα is supposed to be zero:

qα · nα = 0. (3)

Within fibre–fibre contact zones, in which typical cross sections are noted �iαβ , heat transfers
are considered to be due to conduction (i) through contact areas if fibres are in physical contact,
(ii) through the matrix surrounding these physical contacts and (iii) through layers of entrapped
matrix between almost touching fibres. To model such complex situations, a simple mixed
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Cauchy type boundary condition is used in these zones:

qα · nα = hiαβ(Tα − Tβ), (4)

where hiαβ are phenomenological heat transfer coefficients, assumed to be of the same order
of magnitude, i.e. hiαβ = O(hc), where hc is the characteristic heat transfer coefficient.

3. Physics at the macroscale

By using the homogenization method with multiple scale expansions [38–40], we have recently
shown [37] that the macroscopic equivalent continuum corresponding to the above local physics
is a one-phase medium, i.e. with a unique macroscopic temperature here noted T e. It obeys a
classical macroscopic heat balance equation:

Ce ∂T e

∂t
= −∇ · qe, (5)

where the effective volumetric heat capacity Ce = f C and the macroscopic heat flow qe

follows the standard Fourier’s law:

qe = −Λe · ∇T e, (6)

where Λe is the effective conductivity tensor. Its computation requires the solving of steady-
state and linear localization problems posed on REVs. The structure of these problems depends
on the physics that controls conduction at the fibre scale. A relevant measure of the local physics
is the following dimensionless Biot number:

B = �chclc

Sλ
, (7)

where the characteristic scalars �c, hc and lc can be respectively seen as averaged values of
contact surfaces �iαβ , heat transfer coefficients hiαβ and lengths of section of fibres contained
between two adjacent fibre–fibre contacts. Hence, depending on the order of magnitude of B,
three models of effective conductivities have been obtained:

• For model III, which corresponds to B = O(ε), fibre–fibre contacts are highly resistive,
Λe does not depend on λ but is only a function of the heat transfer coefficients hiαβ .
Likewise, the localization problem exhibits a discrete form. It is a system of independent
linear equations in which first order temperature fluctuations around T e, i.e. εT̄ ′

α , are
unknown. These temperature fluctuations are constant in each fibre. For each fibre fα (of
centre of mass Gα) contained in the REV, one has to solve the following linear equation:∑

Cα

�iαβh̃iαβ((εT̄ ′
β − εT̄ ′

α) + GαGβ · ∇T e) = 0, (8)

where h̃iαβ is the average of hiαβ over �iαβ and where the uniform macroscopic temperature
gradient ∇T e is given and constant in the whole REV. Solving (8) then allows to compute
the macroscopic heat flow with the following discrete expression:

qe = − 1

�R

∑
CR

�iαβh̃iαβ((εT̄ ′
β − εT̄ ′

α) + GαGβ · ∇T e) GαGβ. (9)

• For model I, which corresponds to B = O(1/ε), contacts are highly conductive. Λe only
depends on λ. The localization problem to be solved for each fibre fα reads:



∇ · q′
α = 0

q′
α = −λ(∇εT ′

α + ∇T e)

}
in �f

q′
α · nα = 0 on �α

εT ′
α = εT ′

β

q′
α · niαβ = q′

β · niαβ

}
on �iαβ

, (10)
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where, once again, ∇T e is given and constant in the entire REV. The first order fluctuation
temperatures εT ′

α are the unknowns to be determined. Solving (10) then allows us to
compute the macroscopic heat flow:

qe = 〈q′
α〉 = 1

�R

∑
PR

∫
�

q′
αdV. (11)

• For model II, B = O(1), which corresponds to the intermediate physical situation, neither
conduction in fibres nor heat transfer between fibres are dominating the physics at the
microscale and the localization problem is identical to (10), except the condition on the
contact zone, i.e. the fourth equation of the system (10) that now reads:

q′
α · niαβ = −hiαβ(εT ′

β − εT ′
α) on �iαβ, (12)

the expression of the effective heat flow (11) remaining unchanged.

Consequently, by imposing successively three independent unit macroscopic temperature
gradients ∇T e, the macroscopic conductivity tensor Λe can easily be obtained from (9) or
(11). For instance, when ∇T e = e1, one gets �e

1i = −qe
i (i ∈ {1, 2, 3}).

One can finally notice that in the case of models I and II, systems of differential equations (10)
have to be solved. In the following, these systems will be referred to as ‘continuous
formulations’. Solving these localization problems can quickly become time consuming
and cumbersome for realistic REVs. For that purpose, simplified discrete models have been
proposed [37] when the aspect ratio of fibres is high enough to consider that heat flow is uniform
in any cross section and mainly oriented along the fibres’ centrelines. If these conditions are
fulfilled, continuous localization problems (10) can be recasted to discrete systems of 2CR (CR

for model I) linear equations. The 2CR (CR for model I) unknowns of the discrete problems
are the first order temperature fluctuations εT ′

iα at nodes Miα , located on the centreline of fibre
fα , just in front of the contact iαβ (see figure 2). For each node Miα , one has to solve the
following discrete and linear heat balance equation:

λS

(
εT ′

jα − εT ′
iα

lijα

+ eα · ∇T e

)
+ λS

(
εT ′

lα − εT ′
iα

lilα
− eα · ∇T e

)

+ �iαβh̃iαβ(εT ′
iβ − εT ′

iα) = 0, (13)

where lijα is the length of the section (in the following, a section will define the part of a fibre
included between two contacts) ijα of fibre fα between nodes Miα and Mjα . The last term
of the left-hand side of (13) is vanishing in the case of model I, in accordance with the fourth
equation of system (10). This system will be next referred to as ‘discrete formulation’. By
solving this problem, one can compute next the macroscopic heat flow (11) in a discrete form

qe = λ

�R

∑
JR

∫
S

(
εT ′

jα − εT ′
iα

lijα

+ eα · ∇T ′e
)

MjαMiα dS

+
h̃iαβ

�R

∑
CR

∫
�iαβ

(εT ′
iα − εT ′

iβ)MiβMiα dS, (14)

where JR is the set of the ijα sections in the REV. As for the continuous formulation,
the macroscopic conductivity tensor is easily deduced by solving successively the discrete
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Figure 3. (a) Scheme of the elementary microstructures, only one vertical layer is represented.
(b) Corresponding REV and associated FE mesh. (c) First order temperature fluctuation εT ′ (K)
resulting from the FE calculation when the REV is subjected to a macroscopic temperature gradient
∇T e = e1(K m−1).

system (13), for three independent unit macroscopic temperature gradients ∇T e, and by
calculating the macroscopic heat flow with (14).

4. Elementary fibrous microstructures

In this section, assumptions stated in order to establish the discrete formulations for models
I and II are discussed with very simple fibrous microstructures. As seen in figure 3(a), the
considered periodic REV is made up of only two fibres which form a percolating network in
the e1 direction and whose centrelines belong to the plane (e1, e2). Fibres are noted fα and
fβ . They have a length l and the centreline of the fα fibre is aligned along e2. The length
of the section between contact points M1α and M2α is noted lα = 3l/6, that between contact
points M1β and M2β is noted lβ = 5l/6. Fibres exhibit a square cross section S = d2. The two
contact zones �1αβ and �2αβ are supposed to be well defined and have the same surface noted
�. Moreover, a constant heat transfer coefficient h is used to model heat transfers through
these two contact surfaces. Finally, the length lR of the REV in the e1 direction is such that
l2
R = l2

β − l2
α . The other dimensions of the REV have been arbitrarily fixed to lR. Hence, it is
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Figure 4. (a) Evolution of the effective thermal conductivity �e
1 with the Biot number B or the

heat transfer coefficient h for an average aspect ratio of sections (lα + lβ )/2d = 10. Calculation
made with continuous formulation for models I and II (black diamonds) and discrete formulation
for all models (lines). (b) Influence of the average aspect ratio of active parts of fibres and heat
transfer coefficient [W m−2 K−1] on the error due to the discrete formulation.

possible to obtain easily from discrete formulations (13) (models I and II) and (8) (model III)
analytical expressions of the effective conductivity tensor:

• Model I:

Λe = 1

lR

Sλ

(lα + lβ)
e1 ⊗ e1, (15)

• Model II:

Λe = 1

lR

S�λh

2Sλ + h�(lα + lβ)
e1 ⊗ e1, (16)

• Model III:

Λe = 1

2lR
�he1 ⊗ e1. (17)

To check the validity of the above expressions, we have also solved the continuous formulation
(10) on the same REVs using the commercial FE code Comsol [41] and computed the
corresponding effective conductivity tensor. For that purpose, fibres were meshed with
approximately 15 000 tetrahedra with quadratic polynomial interpolations, as shown in
figure 3(b). Analytical and numerical results are compared in figure 4. The graph of
figure 4(a) represents the evolution of the component �e

11 (equal to the principal component
�e

1, since the principal axes of the conductivity tensor eI, eII and eIII are aligned with e1, e2

and e3) of the macroscopic conductivity tensor with both h and B = �h(lα + lβ)/(2d2λ), and
both for the continuous and discrete formulations, when the mean aspect ratio of sections
(lα + lβ)/2d = 10. Firstly, this graph shows that the discrete formulation of model II
(continuous line) tends to the discrete formulation of model I (dotted line) when B → ∞
and to the discrete formulation of model III (dashed line) when B → 0. Secondly, one can
notice that FEM simulation results obtained from continuous formulations of model I and II
(black diamonds) follow the same trends as the discrete ones but are slightly higher. To further
investigate this discrepancy, the graph plotted in figure 4(b) displays the evolution of the error
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(�e Continuous
1 − �e Discrete

1 )/�e Continuous
1 when (lα + lβ)/2d varies from 3 to 100. Results have

been obtained for a wide set of heat transfer coefficients h, ranging from nearly perfect contacts
(h = 109 W m−2 K−1) to very poor contacts (h = 10−3 W m−2 K−1). As expected, the graph
shows that the error quickly decreases when the aspect ratio increases. For example, in the case
of perfect contacts, the error decreases from 15% to 0.5% when the aspect ratio of the section
increases from 3 to 100. Moreover, the poorer the quality of contact is, the better the results
of the discrete description are. It is important to note that the maximum error generated by the
use of the discrete formulation remains rather weak, even for a small aspect ratio of the section
(15% for an aspect ratio of 3). Consequently, within the investigated ranges of aspect ratios
and heat transfer coefficients, physical assumptions used to establish discrete formulations for
models I and II are relevant.

5. More complex fibrous microstructures

More complex and more realistic fibrous microstructures are now considered. Fibres are
straight cylinders with identical length l and with a circular cross section of diameter d. Their
aspect ratio is noted l/d. Fibrous REVs are generated numerically as previously [37,42]: fibres
are supposed to be homogeneously distributed in cubic REVs of volume l3

R (lR � l), the fibre
orientation distribution function follows a Gaussian distribution, and a fibre–fibre contact is
detected as soon as two fibres intersect. Typical fibrous networks generated with this procedure
are illustrated in figure 5: even if a much more sophisticated generation procedure could have
been used to obtain more realistic fibre–fibre contacts [31,32,43], the present microstructures
are however quite close to those encountered in short fibres reinforced composites such as
those shown in figure 1. Fibrous networks were built with various volume fraction of fibres f ,
fibre aspect ratios l/d and various fibre orientations, here characterized with the second order
fibre orientation tensor A [44]. The microstructures have been generated so that the principal
directions eI, eII and eIII of the orientation tensor A, are collinear with e1, e2 and e3 respectively.
Hence, A11 = AI, A22 = AII and A33 = AIII. For each set of microstructure parameters, ten
REVs were generated. As illustrated in figure 5(d), the contact surface area �iαβ between two
contacting fibres fα and fβ is estimated as the intersection of the projected surfaces of the two
contacting fibres on the plane perpendicular to the common normal to the two fibres’ centrelines.
For the sake of simplicity, the heat transfer coefficient h as well as the conductivity λ have
been considered as constant for all fibre–fibre contacts and fibres, respectively. In order to
explore links between the above microstructure parameters and effective thermal conductivity
tensor, numerical experiments are performed using the discrete formulations that have been
implemented in a discrete element code [37], initially developed to model the rheology of
highly concentrated fibre suspensions [42, 45].

5.1. Influence of the volume fraction of fibres

The influence of f has been studied in [37] in the case of models I and III and for constant
area of fibre–fibre contacts equal to fibre cross section. In this situation, for high volume
fractions, it has been observed that the effective conductivity was a linear function of the
volume fraction of fibres when contacts are perfect (model I) while it was a quadratic function
when contacts are of very poor quality (model III). In this work, (i) more realistic contacts,
whose area accounts for the relative orientation of contacting fibres (see figure 5(d)), are
considered and (ii) the situation where neither conduction in fibres nor the fibre–fibre contacts
phenomenon dominates the conduction process (i.e. the situation corresponding to model II)
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Figure 5. 3D random (a), planar random (b) and nearly unidirectional (c) generated fibrous REVs
and their corresponding fibre aspect ratio and fibre orientation tensor. (d) Zoom on the surface
contact between fibres fα and fβ .

is studied. Results are presented in figure 6, in the case of isotropic networks of fibres
exhibiting an aspect ratio l/d = 50. Only the first principal component �e

1 of the effective
conductivity tensor is presented as similar results have been obtained for the other principal
components. In figure 6(a), numerical results are represented by symbols. The volume
fraction of fibres f varies from 0.01 to 0.4 and four heat transfer coefficients are considered:
h = 109 W m−2 K−1, h = 100 W m−2 K−1, h = 10 W m−2 K−1 and h = 1 W m−2 K−1. The
higher the heat transfer coefficient is, the higher the effective conductivity is. Moreover,
below f = 0.02, no results can be obtained by the present method as the percolation
threshold is close to this value (percolation threshold is estimated by Nan model [46] around
f = 0.014). Lines plotted in figure 6(a) represent the best fits of the numerical data by
power-laws: �e

1 ≈ af n. The values of coefficients a and n are given in the figure legend.
For high volume fractions of fibres (f � 0.05) the quadratic evolution (n = 2) of the
effective conductivity with the volume fraction obtained using model III in [37] is retrieved
for heat transfer coefficient h = 1 W m−2 K−1 (square symbols). When the heat transfer
coefficient tends to infinity, the exponent n decreases and n = 1.1 for h = 109 W m−2 K−1,
so that the linear evolution of the effective conductivity tensor observed in [37] is almost
retrieved. By contrast, results for h = 10 W m−2 K−1 or h = 100 W m−2 K−1 cannot be well
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Figure 6. Influence of the volume fraction of fibres f on the first principal component of
the effective conductivity tensor �e

1 (also noted �e
I later, and equal �e

11, since the principal
axes of the conductivity tensor eI, eII and eIII are aligned with e1, e2 and e3), for 3D random
fibrous microstructures and for various values of the heat transfer coefficient h in (Wm−2 K−1).
(a) Numerical results (symbols) have been fitted by power-laws (lines) and (b) compared with the
hybrid model (equation (25)) (lines).

represented neither by a linear nor by a quadratic evolution, since n = 1.6 and n = 1.2,
respectively.

5.2. Influence of the fibre aspect ratio

Figure 7 represents the variations of the three principal components �e
i of the effective

conductivity tensor when the aspect ratio of fibres l/d varies from 5 to 100. Results have been
obtained for a fibre volume fraction of 0.2 and 3D random (figures 7(a, b, c)), planar random
(figures 7(d, e, f )) or nearly unidirectional microstructures (figures 7(g, h, i)). The second
order orientation tensor corresponding to these three types of microstructures are given in
figure 5. Very conductive (h = 109 W m−2 K−1 represented in figures 7(a, d, g)), very resistive
(h = 1 W m−2 K−1 represented in figures 7(c, f, i)) and intermediate (h = 10 W m−2 K−1

represented in figures 7(b, e, h)) fibre–fibre contacts have been considered. In all cases, all
components of Λe increase identically with the aspect ratio. The influence of the aspect ratio
on Λe is much more pronounced when the contacts become less conductive. For example, in
the case of 3D random microstructures, when l/d varies from 10 to 100, components of the
effective conductivity tensor are multiplied approximatively by 3 when h = 109 W m−2 K−1,
by 30 when h = 10 W m−2 K−1 and by 100 when h = 1 W m−2 K−1.

5.3. Influence of the fibre orientation

In figure 7, one can also clearly gauge the strong anisotropy which is induced as microstructures
display planar random or nearly unidirectional fibre orientation. In the case of perfect or
extremely poor fibre–fibre contacts and for an aspect ratio l/d of 50, it has been shown [37]
that the effective conductivity tensor Λe was almost a linear function of the second order
fibre orientation tensor A whatever the fibre volume fraction is [37]. For intermediate
situations (h = 10 Wm−2 K−1) with l/d = 50, figure 8 represents the evolutions of
the terms �e

i /Ai (i ∈ {I, II, III } no summation) with the fibre volume fraction for 3D
random microstructures (figure 8(a)), planar random microstructures (figure 8(b)) and almost
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Figure 7. Influence of the fibre aspect ratio l/d on the principal components of the effective
conductivity tensor�e

i for 3D random (a)–(c), planar random (d)–(f ) and nearly unidirectionnal (g)–
(i) microstructures (f = 0.15), in cases of very conductive fibre–fibre contacts h = 109 W m−2 K−1

(a), (d), (g), very resistive contacts h = 1 W m−2 K−1 (c), ( f ), (i) and intermediate situation
h = 10 W m−2 K−1 (b), (e), (h). Numerical results (symbols) have been compared with the
predictions given by the hybrid model (equation (25)) (lines).

unidirectional microstructures (figure 8(c)). The �e
i /Ais are almost equal whatever the

considered index i. A rather small discrepancy can be observed for almost unidirectionnal
microstructures (figure 8(c)): when f = 0.25, the value of �e

I /AI is approximately 10% lower
than �e

II/AII (= �e
III/AIII). These results confirm that for intermediate quality of contacts, the

effective conductivity tensor Λe can fairly be approximated as a linear function of the second
order fibre orientation tensor A.

Besides the influence of the in-plane anisotropy (defined as AI/AII, in the plane
(e1, e2)) of the microstructure on its dimensionless through-plane conductivity (defined as
�e

III/�
e ISO
III , where �e ISO

III is the through-plane conductivity for a 3D random microstructure)
has been sketched in figure 9. Various through-plane microstructure anisotropies (defined
as (AI + AII)/(2AIII)) have been generated and very conductive (h = 109 W m−2 K−1

see figure 9(a)), intermediate (h = 10 W m−2 K−1 see figure 9(b)) as well as very poor contacts
(h = 1 W m−2 K−1 see figure 9(c)) have been studied. Results have been obtained here for
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Figure 8. Evolutions of the scalar �e
i /Ai ’s (i ∈ {I, II, III } no summation) where Λe is the

effective conductivity tensor and A is the second order orientation tensor. Evolutions are plotted
as functions of the fibre content f for 3D random (a), 2D random (b) and almost unidirectional (c)
microstructures with h = 10 Wm−2 K−1 and l/d = 50. Numerical results (symbols) have been
compared with the predictions given by the hybrid model (equation 25) (lines).

a fibre volume fraction of 0.2 and an aspect ratio l/d = 50. This figure shows that the
dimensionless through-plane conductivities are nearly constant when the in-plane anisotropy
of the microstructure evolves. Only a slight decrease is recorded as the anisotropy increases:
it is then fair to consider that, whatever the quality of fibre–fibre contacts is, the effective
conductivity in a given direction is independent of the anisotropy of the microstructure in the
directions normal to the considered one. This result is a consequence of the ‘linearity’ of the
tensor Λe with the second order fibre orientation tensor A (see figure 8). This result is of
great technical importance. Industrial processes of short fibre composites such as injection or
compression moulding cause important variations of the orientation of fibres in the plane of the
parts [47–49]. Nonetheless, microstructures are often almost planar so that their through-plane
anisotropy can be considered as constant [48, 50]. Hence the last result presented in figure 9
tends to prove that the experimental variations of the through-plane conductivities in injected
parts of short fibre composites observed by [5] cannot be a consequence of in-plane anisotropy
of the microstructure.

5.4. Influence of the heat transfer coefficient

The influence of the heat transfer coefficient h on the effective conductivity is explored via the
Biot number B = 4�̃hl̃/λπd2, where �̃ and l̃ are the averaged values of contact surfaces and
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Figure 9. Evolution of the dimensionless through-plane conductivity with the in-plane anisotropy
for the different through-plane anisotropies for f = 0.2 and l/d = 50 in cases of very conductive
fibre–fibre contacts h = 109 W m−2 K−1 (a), very resistive contacts h = 1 W m−2 K−1 (c) and
intermediate situation h = 10 W m−2 K−1 (b). Numerical results (symbols) have been compared
with the predictions given by the hybrid model (equation (25)) (lines).

lengths of section, respectively. Figure 10 presents the evolution of the principal components
of the effective conductivity tensor with B for 3D random (figure 10(a)), planar random
(figure 10(b)) and nearly unidirectional fibrous microstructures (figure 10(c)). These results
are obtained here with a volume fraction of fibres f = 0.2 and with fibres presenting an aspect
ratio l/d = 50. Three different zones can be considered:

• The first zone corresponds to small Biot numbers: B < 10−2. It is characterized by an
effective conductivity increasing linearly with B. In this situation the physics is dominated
by conduction in the contact zones (model III).

• The second zone corresponds to intermediate Biot numbers: 10−2 < B < 102. In this
zone, the effective conductivity is less sensitive to B (model II).

• The third zone corresponds to high Biot numbers: B > 102. In this situation effective
conductivity does not depend on the Biot number (model I).

It must be pointed out that these zones, which have already been identified for the elementary
microstructure (cf figure 4(a)), do not depend on the fibre orientation distribution, fibre content
and aspect ratio.
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Figure 10. Evolution of the principal components �e
i with the heat transfer coefficient h or the

corresponding Biot number B for 3D random (a) planar random (b) and nearly unidirectional (c)
microstrucutres (f = 0.2 and l/d = 50). Numerical results (symbols) are compared with the
predictions given by the hybrid model (equation (25)) (lines).

5.5. Combined microstructure effects

As already underlined from the homogenization process [36], the Biot number B indicates the
dominant local physics. It is a function of the heat transfer coefficient h (cf previous section)
but it also depends on the mean length of fibre sections between contacts l̃ and the mean surface
of contacts �̃. These microstructural parameters may depend on the fibre aspect ratio, content
and orientation:

• Figure 11(a) presents the influence of the volume fraction of fibres f on the Biot number
B for isotropic microstructures. The higher the volume fraction is, the higher the number
of contacts per fibre is, so that the length of sections between contacts decreases and so
the Biot number. Whatever the heat transfer coefficient is, the Biot number appears to
be divided by 20 when the volume fraction of fibres increases from 0.02 to 0.4. Hence,
when f increases, the effective conductivity may change from a physics corresponding
to model II to a physics corresponding to model III (or from model I to model II).
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Figure 11. Evolution of the Biot number B with (a) the volume fraction of fibres f for various
heat transfer coefficients (3D random REVs and l/d = 50) and with (b) the fibre aspect ratio l/d

(for 3D random, planar random, and nearly unidirectional microstrucutres, f = 0.2) for very good
fibre–fibre contacts.

• For a volume fraction of fibres f = 0.2, figure 11(b) represents the influence of the fibres’
aspect ratio on the Biot number for isotropic, planar and unidirectional microstructures
when the heat transfer coefficient h = 109 Wm−2 K−1. The same trends have been
observed for other heat transfer coefficients. Whatever the considered orientation or heat
transfer coefficient, the aspect ratio seems to play no leading role on the Biot number.

• As shown in figure 11(b), a heat transfer coefficient of 10 W m−2 K−1 leads to Biot numbers
around 0.02, 0.03 and 0.1, respectively for 3D random, planar random and unidirectional
microstructures. Thus, for the same heat transfer coefficient (i.e. for the same quality of
contacts), aspect ratio and fibre content, due to the variation of the surfaces of contacts
with orientation, B is five times higher for oriented microstructures than for isotropic ones.
The effective conductivity may change from a physics corresponding to model III to a
physics corresponding to model II (or from model II to model I) when the microstructure
becomes oriented.

6. Analytical hybrid model

From numerical results obtained in the previous section, a simple analytical model is proposed
here to reproduce them. By considering that the temperature field within the fibrous medium
follows an affine evolution, analytical expressions of the effective conductivity tensors have
been proposed previously in the case of models I and III, for microsructures made up of
homogeneously distributed straight and monodispersed fibres with circular cross section and
identical area of contact [37]. Hence the effective conductivity tensor was estimated by

• in the case of model I:

Λe ≈ ΛeI = f λ

(
1 − 1

C̃α

)
A, (18)

• in the case of model III:

Λe ≈ ΛeIII = C1hkπ
d2l2

24

(
1 − 1

C̃α

)
A, (19)
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where C̃α is the average number of contacts per fibre, C1 is the number of contacts per unit of
volume and k = �̃/S.

As shown in figure 5(d), the contact area �iαβ equals d2/sinθiαβ , where θiαβ is the angle
between the two contacting fibres fα and fβ . Hence, by introducing 〈sinθ〉 as the average
angle of the sine of angles θiαβ in the REV, one can obtain an estimate of k:

k = 4

π〈sin θ〉 . (20)

Finally, by assuming that fibres are homogeneously distributed in the REVs and that their
orientation follows Gaussian distributions, it is possible to obtain, by using the statistical tube
model [51–53], estimations of C̃α and C1:

C̃α ≈ 4f

(
l

π d
2

φ1 + φ2 + 1

)
(21)

and

C1 ≈ f

πdl
C̃α, (22)

where the descriptors φ1 and φ2 can be calculated from the following discrete expression
[37, 42]:

φ1 = 1

P 2
R

∑
PR

∑
PR

‖eα × eβ‖, φ2 = 1

P 2
R

∑
PR

∑
PR

|eα · eβ |. (23)

The evolutions of φ1, φ2 and 〈sinθ〉 with the second order orientation tensor A have
been numerically studied on microstructures with various fibre contents, aspect ratios and
orientations. As an example, figure 12 shows the evolutions of these descriptors as functions
of the two smallest principal values AI and AII of the fibre orientation tensor A, for f = 0.15
and l/d = 50. Round symbols in figures 12(a)–(c) represent numerical results. Continuous
surfaces plotted on the same graphs represent analytical estimations of the numerical results
obtained from the following expressions:

φ1 = (−6.12A2
II + 4.49AII − 2.49)A2

I + (4.46A2
II − 4.87AII + 2.23)AI − 2.47A2

II

+ 2.22AII + 0.14,

φ2 = (−5.20A2
II + 3.58AII − 1.07)A2

I + (3.55A2
II − 0.79AII − 1.26)AI + 1.09A2

II

−1.27AII + 1.00,

〈sin θ〉 = (−6.85A2
II + 5.23AII − 2.78)A2

I + (5.10A2
II − 5.50AII + 2.45)AI − 2.76A2

II

+ 2.44AII + 0.0839. (24)

Such expressions allow fairly good fits of numerical results, whatever the investigated fibre
content, aspect ratio and orientation ranges. Hence, purely analytical estimations of the
macroscopic conductivity tensors in the case of models I and III can be obtained. In
order to extend the validity domain of these two models to that of model II, the following
phenomenological hybrid model is proposed:

Λe ≈ ΛeII ≈ 1

2


 1

1 + 10C̃αf B
ΛeIII +

1

1 +
1

10C̃αf B

ΛeI


, (25)
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Figure 12. Evolution of the microstructure descriptors φ1 (a), φ2 (b) and 〈sin θ〉 (c) with the
two minor principal values AI and AII of the second order fibre orientation tensor A. The round
symbols have been obtained from numerical generation (here f = 0.15). The continuous surfaces
correspond to analytical expressions (24).

where ΛeI and ΛeIII are calculated using equations (18) and (19), respectively. The Biot number
involved in the above proposition can be estimated by:

B ≈ khl

C̃αλ
, (26)

where k is obtained from (20). Please note that when B → ∞ the above hybrid model
numerically tends to model I, whereas it tends to model III when B → 0.

Predictions of the hybrid model (25) have been reported (lines) in figures 6(b), 7–10. The
analysis of these figures brings up the following comments:

• Predictions follow qualitatively trends given by numerical results: the influence of various
microstructure parameters is well captured.

• When fibre–fibre contacts are highly conductive, i.e. when B → ∞, and whatever the
considered fibre orientation, predictions given by the hybrid model are quantitatively in
good agreement with numerical results, if the fibre content f and aspect ratio l/d are
higher than 0.05 and 20, respectively. Two possible factors can explain the observed
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discrepancies below these values. Firstly, at lower fibre content, the generated REVs
may not follow exactly the statistical tube model so that the number of contacts per unit of
volume C̃α involved in (18) may be lower than that predicted by the tube model. Secondly,
the affine assumption used to build the analytical model I, may be more questionable for
those low fibre contents.

• For intermediate situations, i.e. for intermediate Biot number, predictions are still
satisfactory in the case of 3D random and planar random fibrous REVs, if f � 0.05 and
l/d � 20. However, for nearly undirectional REVs, some deviation from the numerical
results occurs. This discrepancy becomes more and more pronounced as B → 0. Reasons
given in the previous points may explain it. Another possible explanation can also be
formulated in this case. Indeed, it has been previously shown that the unique use of A
in the analytical model III was not sufficient to obtain accurate predictions of numerical
results for very oriented fibrous networks: better analytical estimations would be gained
by accounting for the relative position and orientation of contacting fibres [37].

7. Concluding remarks

In this study, the transient diffusion equation through fibrous media with highly conductive
fibres and interface barriers at fibre–fibre contacts has been considered. By studying the
effective conductivity on elementary fibrous microstructures, and by comparing results given
by simple discrete models and those obtained from full finite element calculations, we have
first shown that the error induced by discrete estimations was rather small even for fibres’
sections between contacts that do not display a large aspect ratio. Moreover, the lower the
quality of fibre–fibre contacts, the lower this error is.

Therefrom, the effective conductivity of fibrous networks rather close to those encountered
in short fibre polymer composites was investigated. More precisely, the influences of the fibre
content, aspect ratio and orientation, as well as the quality of fibre–fibre contacts were studied:

• Depending on the quality of fibre–fibre contacts, the influence of the fibre content is drastic,
following power-laws for contents above 0.05, the power law exponent ranging from 1
for perfect fibre–fibre contacts to 2 for highly resistive ones.

• In general, the effective conductivity tensor displays anisotropy, which can be considered
as a linear function of the anisotropy of the second order fibre orientation tensor. The
last result must be reconsidered as fibrous REVs becomes very oriented and fibre–fibre
contacts become very resistive [37].

• For various fibre orientations and contents, and various qualities of contacts, the higher
the fibre aspect ratio is, the higher the effective conductivity is. Moreover, the effective
conductivity is more sensitive to the fibre aspect ratio in the case of resistive contacts.

Finally, an analytical hybrid model was proposed for the effective conductivity tensors.
This model is devoted to REVs in which fibres are homogeneously distributed and follow
Gaussian fibre orientation distributions. Despite its simplicity, its ability to reproduce discrete
numerical simulations was checked within a large range of heat transfer coefficients, fibre
contents, aspect ratios and orientations.
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[6] Dalmas F, Dendievel R, Chazeau L, Cavaillé J-Y and Gauthier C 2006 Acta Mater. 54 2923
[7] Kim Y, Hayashi T, Endo M, Gotoh Y, Wada N and Seiyama J 2006 Scr. Mater. 54 31
[8] Agari Y, Ueda A and Nagai S 1991 J. Appl. Polym. Sci. 43 1117
[9] Kaviany M 1991 Principles of Heat Transfer in Porous Media (New York: Springer)

[10] Torquato S 2001 Random Heterogeneous Materials (New York: Springer)
[11] Milton G 2002 The Theory of Composites (Cambridge: Cambridge University Press)
[12] Sahimi M 2003 Heterogeneous Materials vol 1 and 2 (New York: Springer)
[13] Mawxell J-C 1954 A Treatise on Electricity and Magnetism 3rd edn (New York: Dover) p 1891
[14] Hashin Z and Shtrikman S 1962 J. Appl. Phys. 33 3125
[15] Willis J 1977 J. Mech. Phys. Solids 25 185
[16] Kim I and Torquato S 1993 J. Appl. Phys. 74 1844
[17] Rocha A and Acrivos A 1973 Q. J. Mech. Appl. Math. 26 441
[18] Batchelor G K 1974 Annu. Rev. Fluid Mech. 6 227
[19] Shaqfeh E S G and Koch D L 1988 Phys. Fluids 31 728
[20] Mackaplow M B, Shaqfeh E S G and Schiek R L 1994 Proc. R. Soc. Lond. A 447 77
[21] Sundararajakumar R R and Koch D L 1997 J. Non-Newtonian Fluid Mech. 73 205
[22] Batchelor G, O’Brien F and O’Brien R 1977 Proc. R. Soc. Lond. A 355 313
[23] Cheng G, Yu A and Zulli P 1999 Chem. Eng. Sci. 54 4199
[24] Cheng X and Sastry A 1999 Mech. Mater. 31 765
[25] Flandin L, Verdier M, Boutherin B, Brechet Y and Cavaillé J-Y 1999 J. Polym. Sci. B 37 805
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