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J.-P. Vassal, L. Orgéas,* D. Favier, and J.-L. Auriault
Laboratoire Sols-Solides-Structures (3S), CNRS—Universités de Grenoble (INPG—UJF), Boîte Postale 53,

38041 Grenoble Cedex 9, France

S. Le Corre
GeM—Institut de Recherche en Génie Civil et Mécanique, CNRS—Ecole Centrale de Nantes, Boîte Postale 92101,

44321 Nantes Cedex 3, France
�Received 5 January 2007; revised manuscript received 22 August 2007; published 7 January 2008�

Many analytical and numerical works have been devoted to the prediction of macroscopic effective transport
properties in particulate media. Usually, structure and properties of macroscopic balance and constitutive
equations are stated a priori. In this paper, the upscaling of the transient diffusion equations in concentrated
particulate media with possible particle-particle interfacial barriers, highly conductive particles, poorly con-
ductive matrix, and temperature-dependent physical properties is revisited using the homogenization method
based on multiple scale asymptotic expansions. This method uses no a priori assumptions on the physics at the
macroscale. For the considered physics and microstructures and depending on the order of magnitude of
dimensionless Biot and Fourier numbers, it is shown that some situations cannot be homogenized. For other
situations, three different macroscopic models are identified, depending on the quality of particle-particle
contacts. They are one-phase media, following the standard heat equation and Fourier’s law. Calculations of the
effective conductivity tensor and heat capacity are proved to be uncoupled. Linear and steady state continuous
localization problems must be solved on representative elementary volumes to compute the effective conduc-
tivity tensors for the two first models. For the third model, i.e., for highly resistive contacts, the localization
problem becomes simpler and discrete whatever the shape of particles. In paper II �Vassal et al., Phys. Rev. E
77, 011303 �2008��, diffusion through networks of slender, wavy, entangled, and oriented fibers is considered.
Discrete localization problems can then be obtained for all models, as well as semianalytical or fully analytical
expressions of the corresponding effective conductivity tensors.
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I. INTRODUCTION

The analysis of diffusion phenomena �such as thermal or
electrical conduction� in heterogeneous materials made of
assemblies of connected granular or fibrous particles plunged
into a continuous matrix has been a subject of great interest
for several decades. Many theoretical and numerical works
have been conducted in order to obtain exact analytical so-
lutions or rigorous bounds of the macroscopic effective prop-
erties for such heterogeneous media �1–4�. These studies are
of great importance in many applications. For instance, im-
proving thermal or electrical conductivity of polymer com-
posites using carbon, aluminum, or copper particles becomes
an interesting solution for industrial applications such as heat
sinks, electronic components, breaking systems, etc. These
types of heterogeneous media display a very high contrast
between the conductivities of the matrix and of the particles,
so that predictions given by well-known bounds are usually
not satisfactory �5–7�. A possible way to circumvent the dif-
ficulty to predict their effective transport properties is to as-
sume that conduction in and between contacting or almost
contacting particles is much higher than that inside the sur-
rounding matrix: it is then possible to neglect the contribu-
tion of the bulk matrix to the overall macroscopic conduction

�8,9�. Hence, by using this assumption, many discrete con-
duction models have been established analytically or numeri-
cally �4,8–25�.

It must be underlined that all the mentioned models a
priori assume that the equivalent macroscopic continua are
one-phase media, i.e., with a one-temperature �or electric po-
tential� field obeying to a standard macroscopic diffusion
equation with a standard Fourier’s �or Ohm’s� law between
macroscopic temperature �or electric potential� gradient and
macroscopic heat flow �or electric current�. Nevertheless, by
studying the transient diffusion in heterogeneous media
made of connected phases with the homogenization method
with multiple scale expansions �26–28�, i.e., without a priori
assumption at macroscale, some works have shown that the
above macroscopic postulates could sometimes break down.
For example, if the characteristic wavelength of the macro-
scopic excitation with respect to the length of the local het-
erogeneities are of the same order of magnitude, the problem
may not be homogenized, i.e., there is no macroscopic
equivalent continuum �28�. Moreover, depending on the con-
trast between local conductivities and volumetric heat ca-
pacities, the structure of the macroscopic transient diffusion
equation may deviate from its standard form, exhibiting
memory effects �29�. Lastly, increasing thermal resistances
of interfacial barriers between phases may result in multi-
phase models at macroscale, i.e., with multiple macroscopic
temperature �or electric potential� fields, balances, and con-*Laurent.Orgeas@hmg.inpg.fr
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stitutive equations �30�. It would be interesting to see
whether similar behaviors arise in case of particulate media
or not.

Within that context, this two parts contribution revisits via
the homogenization method with multiple scale expansions,
the macroscopic behavior of a concentrated particulate me-
dium submitted to transient diffusion phenomena when con-
duction in and between contacting or almost contacting par-
ticles is predominant. Different qualities of particle-particle
contacts are considered, as well as possible dependence of
local physical properties with temperature �or electrical po-
tential�. From the unique knowledge of local physics, the aim
is �i� to determine theoretically the structures and properties
of possible macroscopic description�s� corresponding to such
media, �ii� to formulate well-posed localization problems in
order to evaluate the effective macroscopic properties, and
�iii� to analyze quantitatively from this theoretical study the
effective properties of networks of slender, wavy, and en-
tangled fibers in order to size the role of the fiber content and
orientation up. The transient diffusive thermal problem is
treated, but strong analogies with other types of physics can
be established.

In paper I, the theoretical upscaling is performed starting
from the dimensionless description of the physics at the par-
ticle scale �Sec. II�, the homogenization method with mul-
tiple scale expansions is used �Sec. III� and discussed �Sec.
IV�. Depending on the order of magnitude of dimensionless
Fourier and Biot numbers, three interesting situations are
studied, leading to three different macroscopic models. A
discrete formulation of both localization problems and
macroscopic heat flow is obtained for the third model, what-
ever the considered particulate medium. Paper II �35� will
be dedicated to the application of theoretical results to en-
tangled fibrous media.

II. PROBLEM STATEMENT

A. Description of the considered heterogeneous medium

We consider an heterogeneous medium made of fixed and
rigid solid particles surrounded by a stagnant matrix. In order
to establish homogenization based principles for prediction
of effective properties over the macroscopic medium, it is
supposed to be made of a periodic assembly of NREV repeti-
tions �see Fig. 1� of a representative elementary volume
�REV� of the microstructure. The volume of the REV is
noted �REV and its finite characteristic length lREV. It is made
of a set PREV of PREV particles p�. Each particle is supposed
to have a constant density and to be contained in a volume
����REV which characteristic length l� is such that
l�� lREV. In the following, i�� �=i��� will represent the ith
connection or contact in the REV between particles p� and
p�. The set of the CREV connections i�� in the REV will be
noted CREV and that of the C� connections of particle p� will
be denoted by C�. The external surface of a particle p� can be
split in: ��, the surface of the particle in contact with the
matrix, and �i�� of characteristic area �c, the surface of the
ith contact in the REV, between particles p� and p�. We
assume that the volume fraction, geometry, and spatial dis-
tribution of particles are such that there is no isolated particle

or group of particles in the REV. It is also supposed that
there is a good separation of scales between the smallest
“macroscopic” characteristic length Lc of the studied me-
dium �e.g., characteristic size of the considered macroscopic
volume and/or length upon which macroscopic temperature
gradients occur� and the “microscopic” characteristic length
of the physics at local scale lc �e.g., characteristic length
upon which microscopic temperature gradients occur�. This
results in the following condition:

� =
lc

Lc
� 1, �1�

which introduces the separation of scales parameter �. For
the sake of simplicity, it will be assumed that lc, lREV, and l�

are of the same order of magnitude, i.e., lc=O�l��=O�lREV�.

B. Physics at the particle scale

This rigid particulate medium is subjected to a transient
thermal loading. Only heat transfers by conduction are con-
sidered. Following assumptions stated in Ref. �8�, it is sup-
posed that conduction phenomena in and between contacting
�or almost contacting� particles are much higher than those
occurring elsewhere in the stagnant matrix. Thereby, the
thermal balance of the medium is governed by a standard
transient heat equation which in any point of a given particle
p� reads

c�Ṫ� = − � · q� + r�, �2�

in ��, where � is the differential operator with respect to the
space variable X, T��X , t� is the temperature at the consid-

ered point, Ṫ�=�T� /�t, c� represents the volumetric heat ca-
pacity of particle p�, and r� is a volumetric heat source
�characteristic value rc�. The heat capacities are assumed to

Insulation on Γβ

Heat transfer
coeff. hiαβ on Γiαβ

Standard heat
equation: cβ, ΛΛΛΛβ

lREV

lppβ, Ωβ

pα, Ωα

Γα

Standard heat
equation: cα, ΛΛΛΛα

FIG. 1. Scheme of the studied microstructure and local physical
description. The gray particles belong to the representative elemen-
tary volume �REV�. The volume of the REV is denoted �REV and
its finite characteristic length lREV. It is made of PREV particles p�

of volume ��. c� represents the volumetric heat capacity and ��

the conductivity tensor of the particle p�. Its surface splits into ��

the surface in contact with the matrix on which heat transfers are
neglected and �i�� the surface in contact with a particle p� on
which heat transfer is governed by the heat transfer coefficient hi��.
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be of the same order of magnitude �characteristic value cc�,
i.e., ∀ � ��c� /cc��−1. The c� and r� are given and they
can be X dependent. The c�’s can also be temperature depen-
dent. The heat flow vector q� is supposed to follow the stan-
dard linear Fourier’s law

q� = − �� · �T�, �3�

in ��, where �� is the symmetric and positive thermal con-
ductivity tensor of the particles. The principal values ����k

�k� �I , II , III�� of these tensors may be X dependent, T de-
pendent, and are of the same order of magnitude �character-
istic value �c�. Likewise, heat transfers on the surfaces ��

are neglected compared to heat transfers on the surfaces �i��

of contact zones which are supposed to be correctly modeled
by a mixed Cauchy-type boundary condition involving local
heat transfer coefficients hi��. These coefficients can be X
and T dependent and are assumed to be positive quantities of
the same order of magnitude �characteristic value hc�. For
examples, the hi�� can reflect three basic mechanisms �see
Fig. 2�: �a� thermal conduction through the contact area be-
tween two touching particles, �b� thermal conduction through
a thin entrapped matrix layer between two almost contacting
particles, and �c� thermal conduction through an insulating
layer �for example, an oxide layer� between two contacting
particles. These three elementary mechanisms may occur to-
gether in contact zones so that the exact determination of
hi�� may be very complex �8,15,31� and will not be studied
in this article. Hence the physics at the particle scale results
in the following set of boundary conditions:

q� · n̂� = 0 on ��, �q� · n̂i�� = q� · n̂i��

q� · n̂i�� = − hi��	��T
� on �i��,

�4�

where 	��T=T�−T� and where n̂ are external unit normal
vectors to the considered surfaces. It is also assumed that at
the initial time t0, the temperature at any point M is equal to
T0:

∀M � ��, T��t0� = T0. �5�

Lastly, the temperature variations in the particles are sup-
posed to be of the same order of magnitude:

∀M, ∀ �, ∀ �, T� − T0 = O�T� − T0� . �6�

The set of Eqs. �2�–�5� forms the local physical description
of the problem. It is worth noticing that the form of Eqs.
�3�–�5� displays strong analogies with other transient �or not�
and diffusive physical phenomena �see the examples given in
Table I�. The theoretical developments carried out in this
work can be easily transposed to such local physics without
major difficulties �4,34�.

C. Dimensionless form of the local physics

In this subsection as well as in the following one, for the
sake of simplicity, only the case of constant physical proper-
ties with no volumetric heat source will be developed.
Temperature-dependent properties and local heat sources will
be considered in Secs. III F and III G, respectively. Hence,
by adopting the method proposed in Ref. �28�, the set of
dimensionless variables

X� = X/lc, t� = �t − t0�/	tc, T� = �T − T0�/	Tc,

��
� = ��/�c, hi��

� = hi��/hc, c�
� = c�/cc, �7�

is introduced in Eqs. �2�–�5� �subscripts “c” denote charac-
teristic values�. In the above expressions, 	tc=O�t− t0� rep-
resents a typical time interval during which macroscopic
thermal loading is applied, 	Tc=O�T−T0� the typical tem-

pβ

pα

pβ

hiαβ → ∞

αβα inq ˆ.

pα

pβ
αβα inq ˆ.

hiαβ → 0
αβα inq ˆ.

pαpα
j o i n t  o f  m a t r i x

i n s u l a t i n g  
l a y e r

(a) (b) (c)

FIG. 2. Scheme of possible basic heat transfer mechanisms that
may occur in contact zones and of their influence on the heat trans-
fer coefficient hi��.

TABLE I. Examples of analogies �at the particle scale� with the studied thermal problem. The fields T�,

�, P�, and V� represent the temperature, solute concentration, pressure, and electric potential, respectively.
�� is the porosity of particle �, � the density of the flowing fluid, 
 its viscosity, C�

P�P�� the particle fluid
retention capacity, kr� the relative permeability, � the pulsation. J� is the solute diffusion tensor, K� the
permeability tensor, �� the permittivity tensor, and �� the electrical conductivity tensor.

Physics at the particle scale Field Capacity Diffusion Interfacial coefficient

Heat diffusion �Eqs. �3�–�5�� T� c� �� h��

Solute diffusion 
� 1 J� h��



Slow flow of compressible Newtonian fluids
through saturated �s� porous particles

P� ��

���P��

�P�

��P��


 K�
h��

Ps

Slow flow of incompressible Newtonian fluids
through unsaturated �u� porous particles

P� C�
P�P�� kr��P��


 K�
h��

Pu

Electrostatics—nonconductive particles ��� V� �� h��
V�

Electrostatics—conductive particles ��� V� �� h��
V�

Quasistatics—time harmonic current V� ��+ i��� h��
V� + i�h��

V�
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perature variation in the sample. Therewith, the following
dimensionless local form of the physics at the particle scale
is obtained:

c�
� Ṫ�

� = − Fc�
� · q�

� in ��
� , �8a�

q�
� = − ��

� · ��T�
� in ��

� , �8b�

T�
��t0� = 0 in ��

� , �8c�

q�
� · n̂� = 0 on ��

� , �8d�

q�
� · n̂i�� = q�

� · n̂i�� on �i��
� , �8e�

q�
� · n̂i�� = − Bchi��

� 	��T� on �i��
� , �8f�

where the differential operator �� is defined in the dimen-
sionless space and calculated with X�. This system of equa-
tions reveals two dimensionless numbers. The first is the Biot
number Bc

Bc =
hclc

�c
= AcB , �9�

by noting

Ac =
Sc

�c
and B =

lc

Sc�c
/

1

�chc
=

Rparticle

Rcontact
. �10�

In the above relations, lc can be interpreted as the typical
length upon which gradients occur inside the particle,
whereas Sc may be seen as the associated characteristic cross
section involved in the conduction process. For example, in
case of fibrous media, Sc is close to the fiber cross section
and lc is the average distance between two adjacent fiber-
fiber contacts on a fiber �see paper II�. Moreover,
Rparticle= lc /Sc�c and Rcontact=1 /�chc can be seen as resistors
characterizing the conduction inside the particles and
through the particle-particle connections, respectively. The
order of magnitude of the dimensionless Biot number B in-
volved in Eqs. �9� and �10� indicates the predominating
physical phenomena at the local scale: �i� a high Biot number
B corresponds to a physics ruled by conduction inside the
particles �Rparticle�Rcontact�, �ii� when B=O�1�, particle-
particle contacts start curbing heat transfers �Rparticle

	Rcontact�, and �iii� a small Biot number B corresponds to a
local physics governed by heat transfer at particle-particle
contacts �Rparticle�Rcontact�.

Only three situations of interest will be explored in the
following, i.e.,

Bc = O��m�, m � �− 1,0,1� . �11�

Indeed, it can be shown that �i� values of m lower than −1
correspond to the same macroscopic description as m=−1
and �ii� values of m greater than 1 lead to nonconductive
macroscopic media. The second dimensionless number is the
Fourier number Fc,

Fc = 
Dc

lc
�2

with Dc =��c	tc

cc
, �12�

which is the ratio between a characteristic macroscopic dif-
fusion length Dc and the characteristic physical microscopic
length lc. In order to upscale the above local transient phys-
ics, the smallest macroscopic diffusion length D has to be
introduced. Depending on the nature of particle-particle con-
tacts, this length has two expressions. When m�0, the dif-
fusion is governed by conduction in particles so that the
smallest diffusion length reads D=Dc=��c	tc /cc. When
m�0, the diffusion is governed by heat transfers at particle-
particle contacts so that the smallest diffusion length be-
comes D=�hc	tclc /cc.

It is important to notice that a macroscopic description
can be obtained only if there is a good separation of scale
which implies that the smallest characteristic macroscopic
diffusion length D is large with respect to lc, i.e., when

F = 
D

lc
�2

= O��k�, k � − 2. �13�

If this condition breaks down, the above local physics cannot
be upscaled, i.e., no homogenized solution exists. Consider-
ing the nature of the particle-particle contacts, the previous
fundamental condition reads as follows. When m�0

Fc = O��k�, k � − 2. �14�

When m�0, considering Eqs. �12� and �9�,

Fc = O��k�/Bc, k � − 2. �15�

In this work, the only explored cases correspond to k=−2.
Other situations �k�−2� correspond to steady state conduc-
tion problems at the macroscopic scale and can be easily
deduced from the latter. Hence, from the above dimension-
less analysis, three interesting situations must be further ex-
plored �see next section�.

III. UPSCALING

A. Asymptotic expansions

As a result of the separation of scales �1�, a “microscopic”
space variable y�=X / lc and a “macroscopic” space variable
x�=�y�=X /Lc are introduced, X being the physical space
variable. If Eq. �1� is satisfied, then y� and x� appear as two
independent space variables and the physical variables of the
problem, i.e., the temperature fields, can then be seen as a
priori functions of y� and x�, i.e., T�

��X� , t��=T�
��x� ,y� , t��.

Hence, the spatial differential operator �� can be written as

�� = �y� +
lc

Lc
�x� = �y� + ��x�, �16�

where �y� and �x� are calculated with y� and x�, respec-
tively. Thereby, we now assume that the temperature fields
can be looked for in the form of asymptotic expansions in
powers of � �26,27�:
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T�
��X,t�� = T�

�0���x�,y�,t�� + �T�
�1���x�,y�,t��

+ �2T�
�2���x�,y�,t�� + ¯ , �17�

where the functions T�
�i�� are supposed to be �REV periodic

with respect to the dimensionless microscopic space variable
y�. The method of multiple scale expansions then consists in
�i� introducing Eq. �17� into the dimensionless local Eqs. �8�,
�ii� identifying terms with the same power of �, and �iii�
solving boundary value problems that arise at successive or-
ders of �.

B. Model I: Bc=O„�−1
… while Fc=O„�−2

…

In this situation, thermal contacts between particles are
excellent so that they do not affect heat transfers. For ex-
ample, such a situation would be well suited for heat trans-
fers in foams, cellular materials, or in ceramic or metallic
powders near the end of the sintering process, i.e., when
grains are welded and grain-grain contact surfaces are not
too small. This case extends the results obtained in Ref. �30�
for composite materials with connected phases to the case of
particulate media.

�i� The temperatures T�
�0�� do not depend on the consid-

ered particle and are not functions of the microscopic vari-
able y�:

T�
�0���x�,y�,t�� = T�0���x�,t�� . �18�

�ii� The first order temperatures T�
�1�� are the solutions of the

following boundary values problems written on each particle
p� contained in the REV:

�y� · q�
�1�� = 0 in ��

� , �19a�

q�
�1�� = − ��

� · ��y�T�
�1�� + �x�T�0��� in ��

� , �19b�

q�
�1�� · n̂� = 0 on ��

� , �19c�

T�
�1�� = T�

�1�� on �i��
� , �19d�

q�
�1�� · n̂i�� = q�

�1�� · n̂i�� on �i��
� , �19e�

where �x�T�0�� here appears as a given macroscopic thermal
loading which is constant in the whole REV. Multiplying Eq.
�19a� by an appropriate test function T�, see Ref. �29�, inte-
grating over ��

� , using the divergence theorem and the peri-
odicity, it is possible to obtain a weak variational formulation
of this problem for each particle p�:

∀T�, 

��

�
q�

�1�� · �y�T�dV� = �
C�



�i��

�
q�

�1�� · n̂i��T�dS�,

�20�

where the set C� contains all the connections involving the
particle p�. Such a weak formulation allows us to prove the

uniqueness of T�
�1��

and shows that T�
�1�� are linear functions

of �x�T�
�0��, to an arbitrary REV-independent value T̄�1�� �29�:

T�
�1�� = T�1�� = ��1�� · �x�T�0�� + T̄�1��, �21�

where the values of the components ���1���k of the vector
��1�� correspond to the temperature fields T�

�1�� obtained for
macroscopic temperature gradients �x�T�0��= êk with
k� �1,2 ,3�, respectively.

�iii� At the first order of approximation, the equivalent
macroscopic medium is a one phase medium, whose thermal
equilibrium is ruled by a standard heat equation, here written
in its nondimensional form

ce�Ṫe� = − �x� · qe�, �22�

where Te�=T�0��,

ce� = �c�
�� =

1

�REV
� �

PREV



��

�
c�

�dV�, �23�

and

qe� = �q�
�1��� =

1

�REV
� �

PREV



��

�
q�

�1��dV�. �24�

Introducing

���
�� =

1

�REV
� �

PREV



��

�
��

�dV� �25�

and using Eqs. �19b� and �21� yield

qe� = − ����
�� +

1

�REV
� �

PREV



��

�
��

� · �y�
T ��1��dV�� · �x�Te�.

�26�

Consequently, the macroscopic heat flow obeys a standard
Fourier’s law, whose effective thermal conductivity tensor

�e� = ���
�� +

1

�REV
� �

PREV



��

�
��

� · �y�
T ��1��dV� �27�

is definite, positive, and symmetric �29�. The first contribu-
tion ���

�� is simply a volume average of the conductivities in
the REV. The second contribution takes into account the ex-
act morphology of the particulate medium �i.e., distribution
of positions, size, shape, and orientation of both particles and
contacts between them�. One should also stress that �e� is
independent of heat transfer coefficients hi��

� in this model.

C. Model II: Bc=O„1… while Fc=O„�−2
…

Now the quality of contacts between particles decreases,
due to the decrease of contact surfaces ��c� or to the decrease
of the interfacial heat transfer coefficients �hc�. Briefly, most
of the above results remain valid, the only difference con-
cerns Eq. �19d� which now reads

q�
�1�� · n̂i�� = − hi��

� 	��T�1�� on �i��
� , �28�

where the T�
�1��’s are still linear functions of �x�T�0�� to an

arbitrary constant T̄�
�1��:
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T�
�1�� = ��

�1�� · �x�T�0�� + T̄�
�1��. �29�

Integrating Eq. �19a� over ��
� , applying the divergence theo-

rem, and taking into account Eqs. �19c� and �19e� yield the
following compatibility condition:

�
C�



�i��

�
q�

�1�� · n̂i��dS� = 0. �30�

By introducing h̃i��
� as the local averages of the heat transfer

coefficients hi��
� , i.e.,

h̃i��
� =

1

�i��
� 


�i��
�

hi��
� dS�, �31�

and by accounting for Eqs. �28� and �29�, �30� yields

�
C�

�i��
� h̃i��

� 	��T̄�1�� + �x�T�0�� · �
C�



�i��

�
hi��

� 	����1��dS�

= 0. �32�

This represents a system of linear equations from which the

T̄�
�1��’s can be calculated, up to an arbitrary constant. More-

over, Eq. �32� shows that 	��T̄�1�� can be put in the form

	��T̄�1�� = 	����1�� · �x�T�0��, �33�

where the value of the kth component �	����1���k of the vec-

tor 	����1�� equals the solution 	��T̄�1�� when �x�T0
�= êk

�k� �1,2 ,3��. As a consequence, the forms of the macro-
scopic thermal equilibrium �22� and thermal conductivity
tensor �27� remain unchanged. However, because of Eq.
�28�, the macroscopic conductivity tensor �e� depends on
heat transfer coefficients hi��

� . As for model I, the calculation
of the components of �e�, requires the determination of the
��

�1��. This can be achieved by solving the localization prob-
lem �19�, by replacing Eq. �19d� with Eq. �28�, for three
given independent macroscopic temperature gradients
�x�T�0��= êk.

D. Model III: Bc=O„�1
… while Fc=O„�−2

… ÕBc

This case corresponds to heat transfers governed by inter-
facial barriers in contact zones and has not been treated else-
where. The identification procedure at the successive orders
of � leads to the following boundary value problems.

The boundary value problem for T�
�0�� is

�y� · q�
�0�� = 0 in ��

� , �34a�

q�
�0�� = − ��

� · �y�T�
�0�� in ��

� , �34b�

q�
�0�� · n̂� = 0 on ��

� , �34c�

q�
�0�� · n̂i�� = q�

�0�� · n̂i�� on �i��
� , �34d�

q�
�0�� · n̂i�� = 0 on �i��

� . �34e�

Multiplying Eq. �34a� by T�
�0��, integrating over ��

� , applying
the divergence theorem, and accounting for Eqs. �34b�–�34e�
yields



��

�
�y�T�

�0�� · ��
� · �y�T�

�0��dV� = 0. �35�

As the tensors ��
* are definite and positive, it is concluded

from Eq. �35� that �y�T�
�0��=0, i.e., the macroscopic tempera-

ture field of each particle is y� independent:

T�
�0���x�,y�,t�� = T�

�0���x�,t�� . �36�

The boundary value problem for T�
�1�� and compatibility

condition for T�
�0�� are

�y� · q�
�1�� = 0 in ��

� , �37a�

q�
�1�� = − ��

� · ��x�T�
�0�� + �y�T�

�1��� in ��
� , �37b�

q�
�1�� · n̂� = 0 on ��

� , �37c�

q�
�1�� · n̂i�� = q�

�1�� · n̂i�� on �i��
� , �37d�

q�
�1�� · n̂i�� = − hi��

� 	��T�0�� on �i��
� . �37e�

Integrating Eq. �37a� over ��
� , taking into account Eq. �36�

as well as conditions �37c�–�37e�, the following compatibil-
ity condition is obtained:

�
C�

�i��
� h̃i��

� 	��T�0�� = 0. �38�

Multiplying the last equation by T�
�0��, summing over all par-

ticles in the REV, the following expression is obtained:

�
CREV

�i��
� h̃i��

� �	��T�0���2 = 0. �39�

As �i��
� �0 and h̃i��

� �0, the last relation implies

T�
�0���x�,t�� = T�

�0���x�,t�� = T�0���x�,t�� . �40�

Consequently, at the first order, the equivalent macroscopic
medium is still a one-phase medium, as in models I and II.
Likewise, one can notice that system �37� is a boundary
value problem in which the temperatures T�

�1�� are unknowns
and where the macroscopic temperature gradient �x�T�0�� is
given. Multiplying Eq. �37a� by an appropriate test function
T�, integrating over ��

� and considering Eqs. �37b�–�37e� as
well as Eq. �40� the following weak variational formulation
is obtained:

∀T� 

��

�
��

� · ��x�T�0�� + �y�T�
�1��� · �y�T�dV� = 0.

�41�

From this formulation it is possible to prove the uniqueness
of the following solution T�

�1��, up to an arbitrary

y�-independent constant T̄�
�1��. This solution is such that
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q�
�1�� = − ��

� · ��x�T�
�0�� + �y�T�

�1��� = 0 �42�

and can be written as

T�
�1�� = − y�

� · �x�T�0�� + T̄�
�1���x�,t�� , �43�

where y�
� =G�

�M� and G�
� is the center of mass of particle p�.

The boundary value problem for T�
�2�� and compatibility

condition for T�
�1�� are

�y� · q�
�2�� = 0 in ��

� , �44a�

q�
�2�� = − ��

� · ��x�T�
�1�� + �y�T�

�2��� in ��
� , �44b�

q�
�2�� · n̂� = 0 on ��

� , �44c�

q�
�2�� · n̂i�� = q�

�2�� · n̂i�� on �i��
� , �44d�

q�
�2�� · n̂i�� = − hi��

� 	��T�1�� on �i��
� . �44e�

Integrating Eq. �44a� over ��
� , applying the divergence theo-

rem as well as using Eqs. �44c� and �44d� yield the following
compatibility conditions:

�
C�



�i��

�
q�

�2�� · n̂i��dS� = 0. �45�

By noting y��
� =G�

�G�
� , and by accounting for Eqs. �43� and

�44e�, the last relation is equivalent to

�
C�

�i��
� h̃i��

� �	��T̄�1�� + y��
� · �x�T�0��� = 0. �46�

This represents a linear system of PREV−1 independent

equations with PREV unknowns T̄�
�1��. By fixing arbitrarily the

value of one temperature fluctuation, this system has a

unique solution. Likewise, Eq. �46� shows that the 	��T̄�1��

may be put in the following form:

	��T̄�1�� = 	����1�� · �x�T�0��, �47�

where the value of the kth component �	���̄�1���k of the vec-

tor 	����1�� equals the solution 	��T̄�1�� when �x�T�0��= êk
�k� �1,2 ,3��. Vectors 	����1�� therefore verify

�
C�

�i��
� h̃i��

� �y��
� + 	����1��� = 0 . �48�

By multiplying each of these last expressions by a test vector
��� , by summing them for all particles in the REV and by
noting 	����=��� −��� , the following expression is obtained:

∀��� , ∀ ��� , �
CREV

�i��
� h̃i��

� �y��
� + 	����1��� · 	���� = 0.

�49�

If we now choose successively 	����= �y��
� �kêl and then

	����= �y��
� �lêk �k� �1,2 ,3� and l� �1,2 ,3��, three interest-

ing relations can be established when k� l and will be used
in the next point:

�
CREV

�i��
� h̃i��

� ��	���̄�1���l�y���k − �	���̄�1���k�y���l� = 0.

�50�

The boundary value problem for T�
�3�� and compatibility

condition for T�
�2�� are

c�
� Ṫ�0�� = �y� · q�

�3�� + �x� · q�
�2�� in ��

� , �51a�

q�
�3�� = − ��

� · ��x�T�2�� + �y�T�
�3��� in ��

� , �51b�

q�
�3�� · n̂� = 0 on ��

� , �51c�

q�
�3�� · n̂i�� = q�

�3�� · n̂i�� on �i��
� , �51d�

q�
�3�� · n̂i�� = − hi��

� 	��T�2�� on �i��
� . �51e�

Integrating Eq. �51a� over the whole REV, applying the di-
vergence theorem and using Eqs. �51c�–�51e� yield the fol-
lowing compatibility condition, which represents the heat
balance equation of the macroscopic equivalent continuous
medium at the first order of approximation

ce�Te� = − �x� · qe�, �52�

where Te�=T�0�� and qe�= �q�2���. By taking into account Eq.
�44a�, one can use the following relation:

q�
�2�� = �y�

�
� q�

�2��� · �y� �53�

and the divergence theorem to write

qe� =
1

�REV
� �

PREV

�
C�



�i��

�
�y�

�
� q�

�2��� · n̂i��dS�. �54�

By taking into account Eq. �44e�, and by noting that the
double summation in PREV and C� can be replaced by the
summation on the set CREV of the particle-particle connec-
tions in the REV one obtains

qe� = −
1

�REV
� �

CREV



�i��

�
hi��

� 	��T�1��dS�y��
� . �55�

Finally, by accounting for Eqs. �43� and �47�, it can be shown
that the macroscopic heat flow qe� follows a standard Fouri-
er’s law at the first order of approximation

qe� = − �e� · �x�Te�, �56�

where the macroscopic conductivity tensor is defined as

�e� =
1

�REV
� �

CREV

�i��
� h̃i��

� y��
�

� �y��
� + 	����1��� �57�

or, by introducing C1=CREV /�REV
� as the number of connec-

tions per unit of volume,

�e� = C1� 1

CREV
�

CREV

�i��
� h̃i��

� y��
�

� �y��
� + 	����1���� .

�58�

The macroscopic conductivity tensor �e� does not depend on
��

� . Its symmetry results from Eq. �50�. Its components can
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be determined from the calculation of the 	����1��. This is
achieved by solving the linear system of Eqs. �46� and �47�
for three given independent macroscopic temperature gradi-
ents êk �k� �1,2 ,3��.

E. Simplified expressions of the conductivity tensor
for model III

Simpler expressions of the macroscopic conductivity ten-
sor can be obtained for model III in case of elementary mi-
crostructures. For example, let us consider that REV’s are
made of spherical particles of identical radius a� with iden-

tical averaged heat transfer coefficient h̃� and contact surface
�� which can be approximated as a disk of radius ka� �k
being a constant� with a normal unit vector ê�� such as
y��

� =2a�ê��. Then, �e� can be approximated as

�e� = 4�C1h̃�k2a�4
A +
1

CREV
�

CREV

ê�� �
	����1��

2a� � ,

�59�

where

A =
1

CREV
�

CREV

ê�� � ê��, �60�

stands for the second order fabric tensor �33� characterizing
the orientation of contacts between touching particles and
C1=CREV /�REV

� is the number of contacts per unit of vol-
ume. Notice that for a similar type of local physics and mi-
crostructures �monodispersed spherical particles, steady state
conditions, and small contact surfaces�, Batchelor, O’Brien,
and O’Brien �8� assumed that temperature variation 	��T�

between particles p� and p� could be estimated as affine
functions of the mean imposed temperature gradient. At the
first order, this is equivalent to

	��T� 	 	��T�1�� 	 y��
� · �x�T�0�. �61�

As shown from Eq. �46�, such an assumption can be con-
firmed from some regular types of particle arrangements
�square packing, for example�. In general, however, its va-
lidity must be discussed from numerical results �13�. If it
applies, the macroscopic conductivity tensor should then
simply reads

�e� = 4�C1k2h̃�a�4A �62�

and should hence be directly deduced from the unique
knowledge of the microstructure. A similar analysis will be
conducted in paper II in the case of slender, wavy, and en-
tangled fibers.

F. Temperature dependent thermal properties

The above theoretical developments have been achieved
for temperature independent heat capacities c�

� , conductivi-
ties ��

� , and heat transfer coefficients hi��
� . In many applica-

tions, however, thermal properties are considered as
temperature-dependent variables, i.e., c�

��T�
�� and/or ��

��T�
��

and/or hi��
� �T�

��. If these functions satisfy

∀k � 1, O
 1

k!�� �k��
�

�T�
�k�

T�0��
�� � O��1−k� , �63�

��
� being equal to c�

� , ��
� , and hi��

� , respectively, they can be
taken into account in the last upscaling process. Indeed, by
using the following Taylor expansions of the functions ��

�

around T�0��:

��
��T�

�� = ��
��T�0��� + � ���

�

�T�
� �

T�0��
��T�

�1�� + �T�
�2��2

+ ¯� + ¯

+
1

k!
� �k��

�T�
�k�

T�0��
�k�T�

�1�� + �T�
�2��2

+ ¯�k + ¯ ,

�64�

they can be expressed as asymptotic expansions �32�

��
��T�

�� = ��
�0�� + ���

�1�� + ¯ , �65�

where, in particular, ��
�0��=��

��T�
�0���. Condition �63� implies

that for n�1, the ��
�n��’s will never arise in the boundary

value problem in T�0��. From a physical point of view, this
means that close to T�0��, the variation of ��

� with T�
� remains

weak. Therefore, it can be shown that previously established
theoretical results, i.e., localization problems, structures, and
properties of macroscopic heat balance and constitutive
equations, still remain valid, simply replacing c�

� , ��
� , hi��

� ,
ce�, and �e� by c�

��T�0���, ��
��T�0���, hi��

� �T�0���, ce��Te��, and
�e��Te��, respectively.

G. Local thermal heat sources

For the sake of simplicity, possible volumetric heat
sources r� �characteristic value rc� in the right-hand side of
local heat balance Eq. �2� have been neglected until now. It is
possible to take them into account in the upscaling process.
For that purpose a dimensionless term Rcr�

� is added in the
right-hand side of Eq. �8a�, where the dimensionless heat
source r�

� is defined as r�
� =r� /rc and where the dimensionless

number Rc=rc	tc /cc	Tc. By using physical arguments iden-
tical to those conducted for Fc, it can be shown that homog-
enizable situations correspond to Rc=O�Fc�. Also, heat
sources r�

� are supposed to be expressed in the form of
asymptotic expansions in powers of �, in a way similar to
that conducted for the temperatures in Eq. �17�:

r�
��X�,t�� = r�

�0���x�,y�,t�� + �r�
�1���x�,y�,t�� + �2r�

�2���x�,y�,t��

+ ¯ . �66�

It can then be shown that the unique modification in the
results obtained in the above upscaling process is the intro-
duction of the volume average re�= �r�

�0��� in the right-hand
side of the macroscopic balance Eqs. �22� and �52�, in a way
similar to what was done for the heat capacities

ce�Ṫe� = − �x� · qe� + re�. �67�

Hence, for the considered transient thermal problem and the
considered particulate media, calculations of the effective
properties ce�, re�, and �e� are uncoupled.
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IV. CONCLUDING REMARKS

When neglecting heat transfers in the bulk matrix, the
transient and diffusive heat transfers through a network of
connected and highly conductive particles having interfacial
thermal barriers on their contacting zones have been studied
theoretically with the homogenization method of multiple
scale expansions. Theoretical results obtained in the previous
section bring up the following comments.

�i� Depending on both the separation of scales parameter
and the quality of the contacts between touching particles,
the existence of three different macroscopic equivalent me-
dia has been established for the considered local physics and
particulate microstructures. Such media are one-phase con-
tinua that obey standard transient heat balance equations and
Fourier’s law. These models have been established without
any a priori assumption concerning the structures and prop-
erties of the macroscopic balances and constitutive equa-
tions.

�ii� The developments carried out to obtain models I and
II �corresponding, respectively, to highly or rather conduc-
tive contacts� are identical to those achieved previously in
the case of composite materials made of connected phases
�30�. Due to the particulate nature of the considered micro-
structures and to the considered highly resistive contacts,
model III is different than the model obtained in Ref. �30�,
and the media behave as insulators for lower Biot numbers.
It is important to notice that the last results may break down
for some other particulate media. For example, let us con-
sider the case of continuous fibers, i.e., fibers that can cross
the REV. In this situation, the upscaling process would be-
come similar to that conducted in Ref. �30�. This would re-
sult in multiphase macroscopic descriptions for lower Biot
numbers, i.e., with PREV macroscopic temperature fields
T�

�0���x� , t�� and PREV coupled macroscopic heat balance
equations. Identical theoretical results might also be gained
by considering that the REV contains clusters or chains that
are made of short particles linked with excellent particle-
particle contacts, that cross the REV and that are touching
other chains with poorer chain-chain contacts.

�iii� Even if a transient and weakly nonlinear physics is
studied at the microscale and results in a transient and

weakly nonlinear physics at the macroscale, calculations of
the effective macroscopic volumetric heat capacity ce�, heat
sources re�, and conductivity tensor �e� are uncoupled and
can be achieved quite easily. Indeed, ce� and re� are trivial
volume averages of the local heat capacities and heat
sources, whereas �e� is determined by solving steady state
and linear localization problems, independently from local
heat capacities and heat sources.

�iv� In case of models I and II, the calculation of the
macroscopic conductivity tensor �e� requires �i� solving the
partial differential equation system �19d� �replacing Eq. �19�
by Eq. �28� for model II� for three unit vectors �x�T�0��= êk
�k� �1,2 ,3�� and �ii� computing the averaged heat flux
qe�= �q�

�1��� from the knowledge of the temperatures
T�

�1��= ���
�1���k. Typically, this could be achieved with 3D

usual numerical schemes such as finite elements, differences,
or volumes methods. Depending on the number of particles
contained in REV’s as well as their geometry, localization
problems to be solved can rapidly become cumbersome, and
time and memory consuming. The simplification of these
problems in the case of spherical particles have already been
proposed in previous studies for linear and steady state con-
ditions �for example, Refs. �15,18��, leading to a discrete
formulation of the conduction problem. In paper II �35�, such
a simplification will be proposed in the case of fibrous ma-
terials.

�v� By contrast, localization problem in case of model III
is considerably simplified: whatever the considered particu-
late medium, solving the linear discrete system of algebraic
Eq. �46� is required to compute the temperatures

	��T̄�1��= �	���̄�1���k, and then the macroscopic conductivity
tensor is obtained from Eq. �58�.

From this theoretical work, paper II of this contribution
will explore analytically and numerically the effective diffu-
sive properties of networks of high aspect ratio, wavy, and
entangled fibers.
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